
ar
X

iv
:1

70
7.

03
63

2v
1

 [
cs

.C
R

]
 1

2
Ju

l 2
01

7

Cast-as-Intended Mechanism with

Return Codes Based on PETs

Extended Version

Achim Brelle and Tomasz Truderung

Polyas GmbH

a.brelle@polyas.de, t.truderung@polyas.de

Abstract. We propose a method providing cast-as-intended verifiability

for remote electronic voting. The method is based on plaintext equiv-

alence tests (PETs), used to match the cast ballots against the pre-

generated encrypted code tables.

Our solution provides an attractive balance of security and functional

properties. It is based on well-known cryptographic building blocks and

relies on standard cryptographic assumptions, which allows for relatively

simple security proofs. Our scheme is designed with a built-in fine-grained

distributed trust mechanism based on threshold decryption. It, finally,

imposes only very little additional computational burden on the voting

platform, which is especially important when voters use devices of re-

stricted computational power such as mobile phones. At the same time,

the computational cost on the server side is very reasonable and scales

well with the increasing ballot size.

1 Introduction

Modern electronic voting systems are expected to provide a combination of secu-

rity guarantees which includes, most importantly, ballot secrecy and end-to-end
verifiability. For the latter, one crucial part is so-called cast-as-intended verifi-

ability which means that a voter has means to make sure that the ballot cast

on his or her behalf by the voting client application and recorded by the voting
server contains the intended voting option, as chosen by the voter. This property

must be guaranteed without assuming that the voter platform is honest. Indeed,
such assumption would be unjustified especially in the context of remote voting,

where voting client programs (typically HTML/JS applications) run on voters’

devices. One cannot reasonably assume that such devices are properly main-
tained, patched and free of malware. Moreover, as often the code of the voting

client application is served by the voting server, such trust assumption would

have to be extended to such servers as well.
The problem of providing adequate and usable solutions for cast-as-intended

verifiability has recently attracted significant attention. In particular, various
solutions based on the idea of return codes have been proposed [2], [7], [13],

http://arxiv.org/abs/1707.03632v1

[8], [5], [9,10], where different solutions provide different balance of security and

usability features. Notably, solutions based on return codes [7,8,15] were used in

Norway in legally binding municipal and county council elections in 2011 and
2013, [5] was used in 2015 in binding elections in the Swiss canton of Neuchâtel,

while [9], as stated in the paper, is planned to be used as a part of the electronic
voting system for the State of Geneva (Switzerland) [10].

The above mentioned solutions share the following underlying idea. In the

registration phase, each voter obtains over a trusted channel a ballot sheet, where
pre-generated return codes (typically short random alpha-numeric sequences) are

printed next to each voting choice. Then, in the voting phase, after the voter has
selected her voting choices and the voting client application has submitted an en-

crypted vote to the remote voting server, the voting authorities compute/retrieve

(in some way dependent on the specific solution) return codes which are meant
to correspond to the choices made by the voter. These codes are sent back to

the voter (possibly using an independent channel) who compares them with the
codes printed on her ballot sheet next to the selected choices. The idea here is

that when this match succeeds, the voter can be sure that the submitted (en-

crypted) vote indeed contains her intended choices (as otherwise the voter would
not have obtained the matching codes). The voter may then finalize the ballot

casting process (by, for instance, submitting some kind of finalization code) or,

if the match does not succeed, she may undertake different steps (for instance,
vote from another device or use a completely different voting method).

Our Contribution. In this paper we propose a new cast-as-intended mech-
anism based on return codes. Our solution provides an attractive balance of

security and functional properties:

1. It is based on well-known cryptographic building blocks and relies on stan-
dard cryptographic assumptions, which allows for relatively simple security

proofs. In fact, our proofs are modular in that they do not depend on the

details of the underlying voting protocol to which our return code scheme is
added. In particular, our formal security results hold for systems obtained

by adding our return codes to the mix-net-based variants of the well-known
Helios and Belenios protocols.

2. Our scheme is designed with distributed trust in mind: the computations
carried out to retrieve/compute return codes are distributed in their nature,

such that a threshold of trustees must be corrupted in order to carry out a

successful attack and fool the voter.
3. Our solution imposes only very little additional computational burden on

the voting platform, which is especially important if voters use devices of
restricted computational power such as mobile phones. The computational

cost on the server side is very reasonable and scales well with the increasing

ballot size (it is, up to ballots of fairly big size, essentially constant).

Our scheme is meant to provide cast as intended verifiability even if the
voting platform is controlled by the adversary under the following assumptions.

2

First, we assume that not more than t−1 tellers are corrupted (i.e. controlled by

the adversary), where t is the threshold of the used threshold-decryption scheme.

Second, we assume that the printing facility and the ballot delivery channel are
not corrupted. Under these assumptions, if the voter during the voting process

obtains the expected return codes (that is the codes printed on her ballot sheet
next to her intended choices), then the cast ballot is guaranteed to contain the

intended voter’s choice.

We note that the second assumption is shared with other return code solu-
tions. It is a strong assumption and requires special measures in order to be

justified in specific deployments. The same assumption (in addition to the stan-
dard assumptions that the voter platform is honest and that at most t−1 tellers

are corrupted) is necessary for voters’ privacy. Finally, note that our scheme

(similarly to most of the return code solutions; see below for more discussion) is
not meant to provide receipt freeness.

On the technical level, our scheme is inspired by the PGD system [14,11]

which however does not implement the idea of returns codes, but instead the

one of voting codes (where a voter submits codes corresponding to her choice).
Sharing some similarities with this construction, our system differs substantially

from PGD in many aspects.
As an additional contribution of this paper, we demonstrate an attack on a

return code scheme recently proposed in [9,10] which was planned to be used in

the context of the Geneva Internet voting project (see below for more details).

Related Work. As already mentioned, our scheme is inspired by the PGD sys-

tem [14,11] and, on the technical level, uses some similar ideas: it uses distributed
PETs (plaintext equivalence tests) to match the submitted ballots against a

pre-published encrypted code table. Our scheme, however, differs from PGD in

some significant ways. Our scheme scales better with increasing ballot complex-
ity (PGP performs one PET for every entry in the voter’s code table; we perform

only one PET per voter even for relatively complex ballots). On the technical
level we avoid the use of encrypted permutations (onions). Finally, PGD uses

the idea of voting codes, where a voter submits codes corresponding to the cho-

sen candidates (although the authors also suggest the possibility of using return
codes). We note here that the use of voting codes (as in PGD) results in stronger

ballot secrecy (the voting client does not get to learn how the voter’s choice and
hence it does not have to be trusted for ballot secrecy). As a trade-off, using

voting codes tends to be less convinient for the voters.

In a series of results including [2,13,7,8], related to the Norwegian Internet
voting projects (eValg2011 and eValg2013) [15], the underlying, shared idea is

as follows. The code for a voting option v (which is cast in an encrypted form

Encpk(v)) is deterministically derived from v using a per-voter secret s (it typi-
cally is vs). This derivation process is carried out by two servers (playing fixed,

specific roles) in such a way that if only one of them is corrupted, the security
goal of the return codes is not subverted. In order to make this idea work for

3

more complex ballots, [7,8] uses a technique of combining codes, which however

requires some non-standard cryptographic assumption (hardness of the SGSP

problem, where SGSP stands for Subgroup Generated by Small Primes). These
schemes (as opposed to ours) do not allow for more fine-grained distribution of

trust: there are exactly two parties with specific roles, one of which must be
honest.

The above idea was further transformed in a scheme proposed for the voting

system in the canton of Neuchâtel in Switzerland [5], with the main technical
difference that in this system a voter holds one part of the secret used for code

generation (which causes some usability issues which were addressed by intro-

ducing of a so-called usability layer, which unfortunately weakens security guar-
antees). Security of this construction relies on the same non-standard security

assumption as [7,8] do and, similarly, there is no built-in fine grained mechanism
for distributed trust. Compared to our system, this system requires much more

complex computations on the voting platform, but less computations for the elec-

tion authorities (although in both cases the ballot processing time on the server
side is essentially constant independently of the number of voting options).

Recently, an interesting solution has been proposed in the context of the

Geneva Internet voting project [9,10]. This solution is based on oblivious transfer,
where, intuitively, the security of the mechanism is provided by the fact that the

authorities (even although they may know all the codes) do not know which
codes are actually transfered to the voter. This provides some level of protection

against vote buying schemes which otherwise could be very easily mounted by

a dishonest authority (if a voter was willing to disclose her ballot sheet). To our
knowledge, this is the only return-codes scheme with this property.

As a downside, in this protocol codes cannot be transfered using an indepen-

dent channel (they must be transfered via the voter’s platform), which rules out
the use of this protocol in elections where re-voting is allowed. Furthermore, this

protocol, again, uses the same non-standard cryptographic assumption as [7,8].

Finally, as already mentioned, we have discovered a serious flaw in this con-
struction, described in detail in Appendix B. Our attack violates the cast-as-

intended property of the scheme (the voter cannot be sure that the cast ballot
represents her intended choice even if she receives the expected return codes)

and can be mounted by an attacker who only controls the voting platrofm. In

short, we show that such an attacker (which is exactly the kind of attacker the
system is meant to defend against) can cast invalid ballots and still provide the

voters with valid return codes. These invalid ballots are accepted by the voting

server, tallied, and only discovered and rejected after tallying, when the link
between the ballot and the voter has been hidden. Note that even if augmented

the protocol with a mechanism enabling us to trace the mallformed decrypted
ballots back to the voters, it would only point to dishonest voters’ devices which

cannot be held accuntable.

While there is a natural countermeasure for this attack (adding appropriate
zero-knowledge proofs of well-formedness of the ballot), it comes with significant

4

degradation of performance: it works, roughly, in quadratic time with respect to

the number of voting options, which renders this solution impractical for bigger

ballots.1

Structure of the paper. After introducing some preliminary definitions in
(Section 2) and providing an overview of the election process (Section 3), we

describe in Section 4 a simple variant our scheme, applicable only for ballots
with one binary choice. The general variant is described in Section 5, after which

the security analysis is presented in Section 6. In appendices we provide some

further details and demonstrate the mentioned attack on [9].

2 Preliminaries

Our return code scheme uses the well-known ElGamal cryptosystem over a cyclic

group G of quadratic residues modulo a safe prime p = 2q + 1. This cryptosys-
tem is multiplicatively homomorphic (that is Encpk(m) · Encpk(m

′) results in an

encryption Encpk(m · m′) if m and m′ are elements of the underlying group).
A distributed key generation protocol for the ElGamal cryptosystem (where

n tellers jointly generate a secret key and the corresponding public key, and

pre-determined threshold t < n out of n tellers is necessary for decryption) is
proposed, for instance, in [6].

A plaintext-equivalence test [12] is a zero-knowledge protocol that allows the

(threshold of) tellers to verifiably check if two ciphertexts c and c′ contain the
same plaintext, i.e. to check if Decsk(c) = Decsk(c

′), but nothing more about the

plaintexts of c and c′.

Our return codes solution can be added to any voting system with encrypted

ballot of a form which is compatible with our scheme in the following sense:
(1) ElGamal cryptosystem with threshold decryption, as introduced above, is

used to encrypt voters’ choices and (2) ballots contain zero-knowledge proofs of

knowledge of the encrypted choices (which is a very common case); additionally,
for the general case, we require that (3) voters’ choices are encoded in a specific

way (see Section 5) before encryption. We do not fix details of the authentication
mechanism nor those of the tallying process. In fact, our security proofs work

independently of these details. Examples of voting systems compatible with our

scheme are Helios [1] and Belenios [4] with mix-net-based tallying and, for the
simple variant, also with homomorphic tallying.

1 We contacted the authors who confirmed the flaw and are working on a counter-

measure for the attack. According to the authors (personal communication, May 15,

2017), they were able to find a solution which avoids quadratic time computations

during the ballot casting, assuming instead quadratic-time pre-computations carried

out by servers in the off-line phase.

5

3 Overview of the Election Process

In this section we present an overview of the voting process. Because our scheme

(like other return codes solutions) is aimed at providing cast-as-intended veri-

fiability even when the voting platform is potentially corrupted, we make the
distinction between voters and their voting platform, that is devices, including

the software potentially served by the voting server, voters use to cast ballots.
The election process is run by the set of authorities including:

– Tellers who jointly generate the public election key pk e key and share the

corresponding decryption key in a threshold manner. They also, similarly,
jointly generate the public code key pk c which will be used to encrypt codes

in code tables and an auxiliary public key pka for which the corresponding

secret key is known to every teller (here we do not need threshold decryption
and use any CCA2-secure cryptosystem). The tellers take part in code table

generation and generation of additional codes for voters (authentication, fi-
nalisation and confirmation codes). They may also carry out additional steps

(such as ballots shuffling), as specified by the underlying protocol.
– Secure bulletin boards which, traditionally for e-voting systems, are used by

voting authorities to publish results of various steps of the election procedure,

including the final election result. Secure bulletin boards provide append-
only storage, where records can be published (appended) but never changed

or removed.
– Voting server which is responsible for voters’ authentication and ballot record-

ing (where a ballot is published on a designated secure bulletin board).
– Printing facility, including the ballot sheets delivery, used to print ballot

sheets in a trusted way and to deliver ballot sheets to eligible voters. The
printing facility, in the setup phase generates its private/public encryption

key pair and publishes the public key pkp.

Our return code schemes supports the following, general ballot structure:
a ballot may contain a number of voting options (candidates), where a voter can

independently select each of these options (or, put differently, provide ‘yes’/‘no’

choice independently for each voting option). Further restrictions can be imposed
(such as for example, that exactly k or at most k options are selected) and

checked after the ballots are decrypted. Note that with this ballot structure we
can encode different types of ballots, such as for instance, ballots where each

candidate can get more than one vote.

The election process consists of the following voting phases:
In the setup phase the tellers and the printing facility generate keys and

codes, as described above. In the registration phase every eligible voter obtains

(via a trusted channel) a ballot sheet. The ballot sheet contains an authentication
code (used as a authentication measure; we abstract here from the details of the

authentication mechanism and simply assume that a mechanism with sufficient
security level is used), a finalization code, a confirmation code, and a list of voting

6

options (candidates) with printed next to each of them two return codes: one for

the ‘no’ choice and one for the ‘yes’ choice.

In the voting phase, the voter, using her voting platform and the authentica-
tion code, authenticates to the voting server and selects her choices. The voting

platform creates a ballot with the selected choices and submits it to the voting
server. The ballot is then processed by the voting authorities who send back

to the voter (via the voting platform or via some other, independent channel)

sequence of return codes that correspond to the cast (encrypted) choices. The
voter compares the obtained codes with the ones printed on her ballot sheet to

make sure that they indeed correspond to her intended choices. If this is the case,
the voter provides the voting platform with the finalization code which is for-

warded to the voting server. Given this finalization code, the voting server sends

the confirmation code to the voter and completes the ballot casting process by
adding the ballot to the ballot box. If something does not work as expected (the

voter does not get the expected return codes or does not obtain the confirmation
code after providing her finalisation code), the voter can undertake special steps,

as prescribed by the election procedure (use, for instance, another device or the

conventional voting method).
Finally, in the tallying phase, the ballots published on the ballot box are

tallied and the result is computed.

4 The Variant with one Binary Choice

In this section, we present a simple variant of our scheme, where the ballot
contains only one binary choice (two candidate races or ‘yes’/‘no’ elections). This

variant, while avoiding the technical details of the general variant, demonstrates
the main ideas of the scheme.

Code table and ballot sheet. As shortly mentioned before, in the setup phase,

the voting authorities generate for every voter an encrypted code table. We will
now only describe the expected result of the code generation procedure, without

going into the detail. Such details will be given in Section 5.2, where the general

case is covered (which subsumes the simple case discussed in this section). We
only mention here that code tables are generated in fully verifiable way.

The code generation procedure generates, for every voter, two random codes
c0 and c1, corresponding to the ‘no’ and ‘yes’ choice, and a random bit b, called

a flip bit. It also generates for every voter a random finalization code and a

confirmation code. Additionally, we assume that some kind of authentication
codes for voters may be generated by this procedure as well, but we abstract away

from the details of the authentication mechanism, as the presented construction

does not depend on them.
The ballot sheet (delivered to the voter over a trusted channel) contains the

authentication, finalization, and confirmation codes, the return codes c0 and
c1 printed in clear next to, respectively, the ‘no’ and the ‘yes’ voting choice,

7

and the flip bit b. For usability reasons, the flip bit can be integrated into the

authentication code, so that the voter does not have to enter it separately.

The code table associated with the voter, published on a bulletin board, is of

the form

cfin, econf, (e0, d0), (e1, d1)

where cfin is a commitment to the finalization code, econf is encryption of the

confirmation code under pk c and

e0 = Encpke
(b), d0 = Encpkc

(cb), e1 = Encpke
(1− b), d0 = Encpkc

(c1−b).

Note that the this record contains the pair of ciphertexts corresponding to the

‘no’ choice (encrypted 0 and encrypted code c0) and the pair of ciphertexts

corresponding to the ‘yes’ choice (encrypted 1 and encrypted code c1). The
order in which these two pairs are placed depends on the flip bit (if the flip bit

is 1 the order is flipped).2

Ballot casting. The voter provides her voting application with her authentication

code, the flip bit b, and her voting choice v ∈ {0, 1}. The voting application
produces a ballot containing

w = Encpke
(v), Encpka

(b̃), π

where b̃ = v ⊕ b and π is a zero-knowledge proof of knowledge of the plaintext
in the ciphertext w (b̃ is encrypted in order to hide it from an external observer;

the tellers will decrypt this value in the next step).

The voting authorities check the zero-knowledge proof π, decrypt b̃, select eb̃
from the voter’s table and perform the PET of this ciphertext with the cipher-
text w submitted by the voter’s platform. It is expected that this PET succeeds

(which is the case if the voting platform follows the protocol and the ballot sheet

and the code table are correctly generated). If this is the case, the corresponding
encrypted code db̃ is decrypted (which should result in cv) and delivered to the

voter. The voter makes sure that, indeed, the return code is cv, i.e. it corresponds
to the voting choice v, before she provides her finalization code (in order to final-

ize the ballot casting process). The voting authorities check that the provided

finalization code is a valid opening for the commitment cfin. If this is the case,
they finalise the ballot casting process: they jointly decrypt the confirmation

code, send it to the voter, and add the voter’s ballot to the ballot box.

Tallying. Finally, after the voting phase is over, ballots collected in the ballot

box are tallied. We abstract here from the details of the tallying procedure.
Importantly, our security results work regardless of the details of this procedure.

2 Note that the plaintext are first mapped into G before being encrypted; for an

appropriate choice of the mapping, we obtain a system which coincides with the

general variant with k = 1 and, furthermore, allows for homomorphic tallying.

8

The intuition behind security of this scheme is as follows. Because, of the correct-

ness of the code table and PET operations (which is ensured by zero-knowledge

proofs), if the PET succeeds, then the decrypted code must be the return code
corresponding to the actual plaintext in the encrypted ballot. To fool the voter,

an adversary would have to send him the code contained in the second ciphertext
which has not been decrypted. But the best the adversary can do—not being

able to break the used encryption scheme—is blindly guess this code, which gives

him very small probability of success.

Remark 1. For this simple variant, we do not really need to include the flip bit

in the ballot sheet: the ciphertext w could be matched, using the PET protocol,
against both e0 and e1, one of which should succeed, which would determine b̃.

Including the flip bits in the ballot sheets is however crucial for efficiency of the
general variant.

We can note that the additional computational cost of this scheme added to the

voting platform is only one encryption. The computational cost incurred by this
scheme on the server side (per one voter) is one additional decryption to decrypt

b̃, one verifiable PET, and one distributed decryption to decrypt the return code.

As we will see in a moment, the general variant of our scheme (with k inde-

pendent choices) can be seen as a combination of k simple cases as described here
with some optimisations. Interestingly, with these optimisations, the additional

computational cost incurred by our scheme—if the size of the ballot does not

grow too much—remains essentially the same.

5 The General Variant

In this section we present the general variant of our code voting scheme, where

ballots can contain some number k of independent binary choices, one for each
voting option. This variant is expressive enough to handle wide variety of complex

ballots. Despite some technical details used for optimisation, this variant shares
the same underlying idea, illustrated by the simple variant.

We assume some encoding γ of the voting options 1, . . . , k as elements of the
group G such that the voter’s choice, which is now a subset of individual voting

options, can be encoded as the multiplication of the encodings of these individual
options. Of course, we assume that the individual voting options can be later

efficiently retrieved from such an encoding. As an example of such encoding we

can use the technique used for instance in [5,9], where the voting options are
encodes as small prime numbers which belong to the group G.

Similarly, we assume a family of efficient encodings δi (i ∈ {1, . . . , k}) from
the set of return codes to the group G, such that individual codes c1, . . . , ck can

be efficiently extracted from the product δ1(c1) · · · · · δk(ck). An example of such
an encoding is given in Section A.

9

5.1 Ballot Structure and Voting Procedure

Code table and ballot sheets. The code generation procedure is described in
details in Section 5.2. In addition to finalisation and confirmation codes which

are generated as previously, this procedure generates, for every voter and every
voting option i ∈ {1, . . . , k}, two random codes c0i and c1i corresponding to,

respectively, the ‘no’ and ‘yes’ choice. It then generates a random sequence of

flip bits b = b1, . . . , bk, where bi ∈ {0, 1}.
The ballot sheet sent to the voter contains now, besides the authentication,

finalisation, and confirmation codes, return codes (c01, c
1
1), . . . , (c

0
k, c

1
k) printed in

clear next to corresponding voting options and marked as, respectively the ‘no’

and the ’yes’ choice. It also contains the flip bits b (as before, this vector can be

integrated in the authentication code).
The published code table associated with the voter contains, as before cfin,

econf and
(

u0
i , u

1
i

)k

i=0
=

(

tbii , t1−bi
i

)k

i=0

where

t0i = (Encpke
(1), Encpkc

(δi(c
0
i)) and t1i = (Encpke

(γ(i)), Encpkc
(δi(c

1
i)).

Note that t0i corresponds to the ‘no’ choice (it contains an encryption of 1 and

the encoded code for ‘no’) and t1i corresponds to the ‘yes’ choice (it contains an
encryption of the encoded option i and the encoded code for ‘yes’). Note also

that ubi
i = t0i and u1−bi

i = t1i .

Ballot casting. The voter provides her voting application with her voting choice

v1, . . . , vk ∈ {0, 1} and the bit sequence b. The voting application computes

v =
∏

i∈V γ(i), where we define V as the set {j : 1 ≤ j ≤ k, vj = 1}, and
produces a ballot containing

w = Encpke
(v), Encpka

(b̃), π

where π is, as before, a zero-knowledge proof of knowledge of the plaintext of w
and b̃ = b̃1, . . . , b̃k with b̃i = bi ⊕ vi.

The voting authorities decrypt b̃ and select the values wi = ub̃i
i , for i ∈

{1, . . . , k}. Note that if the voter has not chosen the i-th election option, then
wi = ubi

i = t0i , by the definition of u. Otherwise, wi = u1−bi
i = t1i .

The voting authorities multiply w1, . . . , wk (component-wise) obtaining the

pair (e∗, c∗), where e∗ should be (if the voter platform followed the protocol)
encryption of v =

∏

i∈V γ(i). The voting authorities perform the PET of e∗ with

the encrypted choice w from the ballot. If this PET fails, the casting procedure

is canceled. Otherwise, the decryption tellers jointly decrypt c∗. Observe that,
by the properties of the published code table, this decrypted value is the product

of δj(c
vj
j), i.e. it is the product of the codes corresponding to the choices made

by the voter. This value is decomposed into individual codes cv11 , . . . cvkk and sent

10

to the voter (via the voting platform or an independent channel). As before,

the voter makes sure that the received codes correspond to her choices before

providing the finalisation code.

Note that the ballot processing on the server side only requires one verifiable

PET, one decryption and one threshold decryption, independently of the number
k of the voting options, plus some number of multiplications and divisions (which

depends on k), as long as k codes can be efficiently represented as one element
of the group G which is in detail discussed in Section A.

5.2 Code Table Generation

The code table generation presented below is fully verifiable. Note that we could

also consider a version without zero-knowledge proofs, but with partial checking
instead, where a bigger number of records is produced and the some of them

(randomly selected) are open for audit.

We will assume that the code generation procedure is carried out by the

tellers, but it can by carried out by any set of independent parties, as it does not

require possession of any secret keys. We will present here a version, where, for
the same voting option, distinct voters obtain distinct codes, although different

variants are also possible (and may be useful if the number of voters is very big).

The set of codes is Codes = {1, . . . ,m} with m > 2n, where n is the number of

voters (reasonable values for m, that is values corresponding to desired security
levels, can be determined using Theorem 3).

For simplicity of presentation, in the following, we will leave out handling of
the authentication, finalization and confirmation codes. The procedure consists

of the following steps.

1. For every voting option j, the tellers deterministically compute

Encpkc
(δj(1)),Encpkp

(1), . . . ,Encpkc
(δj(m)),Encpkp

(m).

where all the ciphertext are obtained using the pre-agreed randomness 1.

2. The tellers shuffle the above sequence of ciphertexts using a verifiable mix

net obtaining a sequence of the form

Encpkc
(δj(c1)),Encpkp

(c1), . . . ,Encpkc
(δj(cm)),Encpkp

(cm),

where ci = π(i) for some permutation π and the ciphertext are re-randomized.

Note that for this we need to use a version of verifiable mixing which applies

the same permutation (but independent re-randomization factors) to pairs
of ciphertexts. Such generalizations of know verifiable shuffling algorithms

are possible.3

3 In particular, it is straightforward to generalize the shuffle protocol of [3] to provide

such functionality.

11

3. The tellers take the consecutive encrypted codes produced in the previous

step and organize them into the records of the following form, one for each

voter i:
{

Encpkp
(0),Encpkp

(c′j),Encpkp
(1),Encpkp

(c′′j),

Encpke
(1),Encpkc

(δj(c
′
j)),Encpke

(γ(j)),Encpkc
(δj(c

′′
j))

}

j∈{1,...,k}

where the ciphertext with (encoded) choices are generated deterministically

with the randomness 1.
4. The tellers perform, one after another, series of micro-mixes for every such

a record: Each teller, for the input record R = (a1, b1, a2, b2, a
′
1, b

′
1, a

′
2, b

′
2)

(which is the output of the previous teller or, for the first teller, the record

produced in the previous step) picks a random bit. If this bit is 0, then it

only re-encrypts all the elements R. If the flip bit is 1, then, in addition,
it accordingly flips the elements of the record and outputs a re-encryption

of R′ = (a2, b2, a1, b1, a
′
2, b

′
2, a

′
1, b

′
1). The teller produces a zero-knowledge

proof of correctness of this operation (such step can be implemented as a
verifiable mixing operation; it can be also realized using disjunctive Chaum-

Pedersen zero-knowledge proofs of the fact that the resulting record is either
a re-encryption of R or R′).

5. The parts of the records encrypted with pk c and pk e are published in voters’

code tables. The parts encrypted with pkp are given to the printing facility
which decrypts the records. The decrypted content contains the return codes

and (implicitly, via the order of plaintexts) the flip bit sequence b.

Because, in the above procedure, all the operation are fully deterministic or

with appropriate zero-knowledge proofs, we obtain the following result.

Theorem 1. The above procedure is corrects, i.e. it produces correctly linked

ballot sheets and encrypted code tables with overwhelming probability. Moreover,
unless the threshold of trustees are dishonest, only the printing facility learns

how codes are distributed amongst voters.

6 Security Analysis

As noted in the introduction, coercion resistance and receipt-freeness are not the

goals of our scheme. In fact, the use of return codes, as in many similar solutions,
specifically makes the scheme prone to vote selling if dishonest authorities are

involved in the malicious behaviour.

The results presented in this section are stated for the case where re-voting is
not allowed. For the case with re-voting (casting multiple ballots, of which, say,

the last is counted), we expect that the privacy result holds (we leave however the

proof for future work), while only a weaker form of cast-as-intended verifiability
than the one presented in Section 6.2 can be guaranteed: namely, we have to

assume that an independent channel is used to send return codes to voters and
that both the tellers (who see the sent return codes) and this channel are honest.

12

6.1 Ballot Secrecy

Ballot secrecy means, informally, that it is impossible (for an adversary) to obtain

more information about the choices of individual honest voters (that is voters
following the protocol), than can be inferred from the explicit election result. Our

code voting scheme provides voters privacy under the following assumptions:

P1. The voting platform is not corrupted.
P2. At most t− 1 tellers are corrupted, where t is the threshold for decryption.
P3. The printing facility and the ballot sheet delivery channel are not corrupted.

The first two assumptions are standard and for voters’ privacy and shared by

many e-voting protocols (using and not using return codes). The third assump-
tion is also shared by any code voting scheme (where codes need to be printed

and delivered to the voter). Therefore, in this sense, these are the minimal as-

sumptions for electronic voting with return codes.
Note also, that the informal definition of privacy given above only protect

honest voters who, in particular, do not reveal their ballot sheet to another

parties, excluding voters who want to sell their ballots.
We formalize the above notion of privacy using the following game between

the adversary and the system P representing the honest components of the e-
voting system, where the adversary gets to control all but two (honest) voters.

For simplicity of presentation, we consider here the simple case where voters have

only one yes/no choice. We will consider two variants of P : variant P0, where
the first of the honest voters votes for the ‘no’ option and the second honest

voters chooses the ‘yes’ option, and variant P1, where the choices of the honest
voters are swapped. With these definitions, we express the notion of privacy by

requiring that there is no polynomially bounded adversary A which can detect

if he is interacting with P0 or P1 (up to some negligible probability), that is:

Prob[P0 ‖A 7→ 1] ≡negl Prob[P1 ‖A 7→ 1] (1)

where Pi ‖A 7→ 1 denotes the event that in the run of the system composed of Pi

and A, the adversary outputs 1 (accepts the run). We assume that the adversary

can interact with the system in the following way: it interacts with the honest

tellers playing the role of the dishonest tellers (in all the protocol stages). It
also casts ballots of the dishonest voters and, at some chosen time, triggers the

honest voters to cast their ballots.
We will now establish our privacy result in a modular way, independently of

many details of the underlying voting system to which our return code scheme

is added. We only assume that the system has the structure which allows for
the described above game and which uses ballot encoding ‘compatible’ with our

construction, as described in Section 2.

Theorem 2. Let U be the underlying voting protocol and let P denote the pro-

tocol obtained from U by adding our return code scheme. If U provides ballot
secrecy, as expressed by (1), then P provides secrecy as well.

13

In the proof we show that all the additional elements of P (related to codes)

can be simulated by a simulator which has only black-box access to U . See

Appendix C for more details.

6.2 Cast-as-intended Verifiability

Cast-as-intended verifiability means that an honest voter can, with high proba-

bility, make sure that the ballot cast on her behalf by her voting platform and
recorded in the ballot box by the voting server contains her intended choice. Our

scheme provides cast-as-intended verifiability under one of the following cases:

(1) The voter client is honest. (2) The following trust assumptions are satisfied:

V1. At most t− 1 tellers are corrupted.

V2. The printing facility and the ballot sheet delivery channel are not corrupted.

The first case is trivial (note that the very purpose of code voting is to provide

cast-as-intended verifiability in the case the voter client is not honest). We only
need to assume that the voting client has means to check that the cast ballot has

been in fact added to the ballot box and that there is a mechanism preventing

any party from removing or modifying this ballot (which is the case if we assume
that the ballot box is an instance of a secure bulletin board).

In the following we analyse the second case. Our result is as follows.

Theorem 3. Under the assumption V1 and V2, for any given honest voter

(possibly using a dishonest voting platform) and for any of the k voting options,

the probability that the voter obtains the expected code (that is the code printed
next to voter’s choices), while the recorded ballot contains different choices for

this voting option is not bigger than 1

m−n−n′
(plus a negligible value), where m

is the number of generated codes, n is the total number of voters, and n′ < n is

the number of corrupted voters.

The proof of this result, similarly to the privacy result, does not depend on
the details of the authentication mechanism nor on the details of the tallying

phase.

The intuition behind this statement is that everything that the adversary can
learn about code distribution is, essentially (up to cases of a negligible probabil-

ity), what is explicitly given to him, that is (a) n codes that have been decrypted

by the tellers (b) n′ remaining codes of dishonest voters (because the adversary
gets to see all the codes of these voters). So, if the adversary wants to come up

with the code corresponding to the opposite choice (for the considered voting

option) of the honest voter in order to fool her, the best he can do is pick one
of the remaining m− n− n′ codes at random.

In order to prove this statement we, similarly to the privacy proof, use the

ideal (honest) code generation procedure and replace PETs by the appropriate
ideal functionality. In this setting the following is true.

14

Because the code table is correct (correctly corresponds to the printed ballot

sheets) and the results of PETs is correct too (as we are using the ideal function-

ality), it follows that the decrypted codes correspond to the actual voting options
in the encrypted ballots. We can then show that, if the adversary had a strategy

of guessing an unencrypted code of an honest voter with better probability than
given by the blind guess as described above (where the adversary picks one of

the possible codes at random), this would break the IND-CPA property of the

underlying encryption scheme.

References

1. Ben Adida. Helios: Web-based Open-Audit Voting. In Paul C. van Oorschot, editor,

Proceedings of the 17th USENIX Security Symposium, pages 335–348. USENIX

Association, 2008.

2. Jordi Puiggaĺı Allepuz and Sandra Guasch Castelló. Internet voting system with

cast as intended verification. In E-Voting and Identity - Third International Con-

ference, VoteID 2011, Tallinn, Estonia, September 28-30, 2011, Revised Selected

Papers, pages 36–52, 2011.

3. Stephanie Bayer and Jens Groth. Efficient Zero-Knowledge Argument for Correct-

ness of a Shuffle. In David Pointcheval and Thomas Johansson, editors, Advances

in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on

the Theory and Applications of Cryptographic Techniques, volume 7237 of Lecture

Notes in Computer Science, pages 263–280. Springer, 2012.

4. Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène. Elec-

tion verifiability for helios under weaker trust assumptions. In Computer Security

- ESORICS 2014 - 19th European Symposium on Research in Computer Security,

Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II, pages 327–344, 2014.

5. David Galindo, Sandra Guasch, and Jordi Puiggali. 2015 Neuchâtel’s Cast-as-

Intended Verification Mechanism. In E-Voting and Identity - 5th International

Conference, VoteID 2015, Bern, Switzerland, September 2-4, 2015, Proceedings,

pages 3–18, 2015.

6. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key

Generation for Discrete-Log Based Cryptosystems. J. Cryptology, 20(1):51–83,

2007.

7. Kristian Gjøsteen. The norwegian internet voting protocol. In E-Voting and Iden-

tity - Third International Conference, VoteID 2011, Tallinn, Estonia, September

28-30, 2011, Revised Selected Papers, pages 1–18, 2011.

8. Kristian Gjøsteen. The norwegian internet voting protocol. IACR Cryptology

ePrint Archive, 2013:473, 2013.

9. Rolf Haenni, Reto E. Koenig, and Eric Dubuis. Cast-as-Intended Verification in

Electronic Elections Based on Oblivious Transfer. In Electronic Voting - First

International Joint Conference, E-Vote-ID 2016, Bregenz, Austria, October 18-21,

2016, Proceedings, pages 73–91, 2016.

10. Rolf Haenni, Reto E. Koenig, Philipp Locher, and Eric Dubuis. CHVote system

specification. IACR Cryptology ePrint Archive, 2017, 2017.

15

11. James Heather, Peter Y. A. Ryan, and Vanessa Teague. Pretty Good Democracy

for More Expressive Voting Schemes. In Dimitris Gritzalis, Bart Preneel, and Mari-

anthi Theoharidou, editors, Computer Security - ESORICS 2010, 15th European

Symposium on Research in Computer Security, volume 6345 of Lecture Notes in

Computer Science, pages 405–423. Springer, 2010.

12. M. Jakobsson and A. Juels. Mix and Match: Secure Function Evaluation via

Ciphertexts (Extended Abstract). In Advances in cryptology-ASIACRYPT 2000,

page 162. Springer Verlag, 2000.

13. Jordi Puigalli and Sandra Guasch. Cast-as-intended verification in norway. In 5th

International Conference on Electronic Voting 2012, (EVOTE 2012), Co-organized

by the Council of Europe, Gesellschaft für Informatik and E-Voting.CC, July 11-14,

2012, Castle Hofen, Bregenz, Austria, pages 49–63, 2012.

14. P.Y.A. Ryan and V. Teague. Pretty Good Democracy. In Proceedings of the 17th

International Workshop on Security Protocols 2009, 2009.

15. Ida Sofie Gebhardt Stenerud and Christian Bull. When reality comes knocking

norwegian experiences with verifiable electronic voting. In 5th International Con-

ference on Electronic Voting 2012, (EVOTE 2012), Co-organized by the Council

of Europe, Gesellschaft für Informatik and E-Voting.CC, July 11-14, 2012, Castle

Hofen, Bregenz, Austria, pages 21–33, 2012.

A Encoding for Codes

In this section we describe some potential instantiations for the family δk (i ∈

{1, . . . , k}) of functions from the set of codes to the group G such that individual

codes c1, . . . , ck can be efficiently extracted from a product δ1(c1) · · · · · δk(ck).

A simple construction is to use the initial small prime numbers p0, p1, . . .

which belong to the group G to represent consecutive bits of the binary rep-
resentation of codes, as described below. Let us consider codes of the size of l

bits.

For a code c with the binary representation b0, . . . , bl−1, the function δk will

use l primes, say, pkl−l, . . . pkl−1 as follows:

δk(c) =
∏

j∈{0,...,l−1}, bj=1

pkl−l+j . (2)

That is, we take the product of those primes that corresponds to non-zero bits.
Note that different δk use different primes. For the decoding (computing the

inverse of δk) one simply needs to factorize the resulting value into the used small

primes, which can be done efficiently. Note that, since the considered primes are
in G, the product (2) is in G as well, provided that it is smaller than p. Moreover,

because we want to multiply encrypted δk(c), we need to make sure that the

product of such values does not grow beyond p as well. This imposes a limit
on how many codes can we represent in a single ciphertext. For instance, for

the standard 3072-bit ElGamal group, using this encoding we can have about
300 (exactly 296) independent bits, which allows us to handle 30 disjoint voting

16

questions with 2-Base32-character codes, or 15 voting questions with 4-Base32-

character codes. If a ballot sheet needs to contain more than this, additional

ciphertexts would have to be used.
We can, however, relatively easy obtain denser encoding. If, for instance,

instead of using one prime to represent one bit of a code, we use groups of
32 consecutive prime numbers to represent 5 bits of the code (where only one

prime in the group is set), then the same group can fit around 1000 bits in one

ciphertext. This gives 100 disjoint voting questions with 2-character codes or 50
questions with 4-character codes, a number corresponding to relatively complex

ballots.

B Attack on [9]

In order to understand the attack presented below, it may be useful for the

reader to first consult the original paper [9]. It is worth noting that this attack

scenario does not undermine the underlying (k out of n)-OT scheme. It only
utilizes the fact that a dishonest receiver in this scheme can obtain up to k (but

not more) values even if it does not follow the protocol. We describe here an
attack for the case with n = k = 2.

The intended run of the protocol is as follows. For the voter’s choice s =

(s1, s2), the voting platform (VP) prepares an OT query

a = (a1, a2), where aj = Γ (sj) · y
rj ,

for random rj , where y is the public election key. It also computes b = gr1+r2 .

Let a denote the product of elements of a that is a1 ·a2. Note that c = (b, a) is an

ElGamal ciphertext (which, although not explicitly sent, will be considered to be
the ciphertext cast by the voter) encrypting the plaintext p = Γ (s1) ·Γ (s2) with

randomness r = r1 + r2. The VP sends a and b along with a ZKP of knowledge
of r and p.

From the OT response, the VP can now compute the codes for s1 and s2
which are shown to the voter who provides the confirmation code and the proto-
col goes on. Here are the details of how the codes are retrieved. The OT response

contains:

aα1 , aα2 , yα,

c1 ⊕H(Γ (s1)
α), c2 ⊕H(Γ (s2)

α), . . .

for some random α, where c1 and c2 are the codes corresponding to choices s1
and s2. Knowing r1 and r2, the VP can compute Γ (s1)

α and Γ (s2)
α and, in

turn, the codes c1, c2.

The dishonest run goes, for example, like this: For the voter’s choice s =

(s1, s2) as before, the VP prepares the OT query

ã = (a1, ã2), where ã2 = Γ (s1)
7 · Γ (s2) · y

r2

17

and sends ã along with b and a ZKP of knowledge of r and the plaintext p̃,

which is now Γ (s1)
8 · Γ (s2). Jumping ahead, this plaintext will be rejected as

invalid, but only after (mixing) and final decryption, when there is no visible
link between the decrypted ballot and the voter.

Nevertheless, from the OT response, the VT can easily compute the codes for
s1 and s2 and make the protocol proceed as if the intended, valid ballot was cast.

To see this, we can notice that, given the OT response, the VT can compute

values Γ (s1)
α and (Γ (s1)

7 · Γ (s2))
α, from which it is easy to compute Γ (s2)

α

and the same codes c1 and c2 as in the honest run. These codes are delivered to

the voter who then continues the procedure.

A straightforward countermeasure for this attack would be adding appropriate

zero-knowledge proofs of correctness of each aj , which however adds a significant

computational overhead (it works in time O(k · n)).

C Proof of Theorem 2

We will now sketch the proof of this theorem, under the simplifying assumption
that the code generation procedure is honest, i.e. carried out by one honest party

(which is part of P). This assumption is justified by Theorem 1.
First, we can observe that

Prob[P0 ‖A 7→ 1] = Prob[P0 ‖A 7→ 1 ∧ b = (0, 0)] + Prob[P0 ‖A 7→ 1 ∧ b = (0, 1)]+

Prob[P0 ‖A 7→ 1 ∧ b = (1, 0)] + Prob[P0 ‖A 7→ 1 ∧ b = (1, 1)]

where b represent the pair of flip-bits of the honest voters, and similarly for P1.
We can show that Prob[P0 ‖A 7→ 1] = Prob[P1 ‖A 7→ 1] by showing that

Prob[P0 ‖A 7→ 1 ∧ b = (0, 0)] ≡negl Prob[P1 ‖A 7→ 1 ∧ b = (1, 1)]

Prob[P0 ‖A 7→ 1 ∧ b = (1, 0)] ≡negl Prob[P1 ‖A 7→ 1 ∧ b = (0, 1)]

and so on. We focus on the first equation; the remaining cases are similar.
In order to prove this equation, we construct a simulator S such that

Prob[P0 ‖A 7→ 1 ∧ b = (0, 0)] ≡negl Prob[U0 ‖S ‖A 7→ 1 ∧ b = (0, 0)]

and

Prob[P1 ‖A 7→ 1 ∧ b = (1, 1)] ≡negl Prob[U1 ‖S ‖A 7→ 1 ∧ b = (1, 1)]

and, furthermore, S does not use b in any way (except that it picks this value

at random). This gives

Prob[P0 ‖A 7→ 1 ∧ b = (0, 0)] ≡negl Prob[U0 ‖S ‖A 7→ 1 ∧ b = (0, 0)]

=
1

4
· Prob[U0 ‖S ‖A 7→ 1] ≡negl

1

4
· Prob[U1 ‖S ‖A 7→ 1]

= Prob[U1 ‖S ‖A 7→ 1 | b = (1, 1)] ≡negl Prob[P1 ‖A 7→ 1 | b = (1, 1)].

18

Which completes the proof.

We construct S in the following way. Recall that S must simulate all the

honest components of P and during this simulation it can interact with U (in
the role of an adversary for U).

Setup. S forwards all the messages of the adversary related to the underlying

protocol directly to U and vice versa. It simulates the honest tellers in the

procedures added in P (generation of additional keys). Finally, for code table
and ballot sheets it simulates the process as prescribed by the protocol with the

exception of the code table of the honest voters which are created as follows.
S first triggers the honest voters (of U) to cast their ballots. Let u0 and u1 be

the encrypted choices of these voters taken from these ballots. S then randomly

picks the flip bits for the honest voters but ignores their values (these values
will not be used in the following). The code table entries of the honest voters, as

computed by S, are respectively

c, (u′
0, d0), (u

′
1, d

′
0) and c′, (u′′

0 , d1), (u
′′
1 , d

′
1)

where c, c′, d0, d
′
0, d1, d

′
1 are generated like in the original code generation proce-

dure (where, in particular the codes are picked at random), u′
0, u

′′
0 are (indepen-

dent) re-encryptions of u0 and, similarly u′
1, u

′′
1 are (independent) re-encryptions

of u1.

This produces the code table with exactly the same distribution as the honest
procedure (under the given condition restricting b).

Honest voters. For the first honest voter S uses the original ballot (containing

u0) as produced by the honest voter when it was triggered and adds to it the

encryption of b̃ = 0. Similarly for the second honest voter, but now b̃ is set to 1.

PETs. By the security properties of the PET protocol, S can simulate its shares

without knowing the secret key share, if only the result of PET known, which
holds in our case: for the honest voters the result of PETs is simply ‘true’; for the

dishonest voters the simulator can run the extraction algorithm to extract the
used plaintexts from the zero-knowledge proofs included in the ballots, which al-

lows the simulator to determine the result of the PETs, as it knows the plaintexts

in the code tables of dishonest ballots (the simulator generated these plaintexts
in the setup phase).

Decryption of codes. S knows and uses its secret key share.

Note that, indeed, in this simulation, S does not make any use of the flip bits
(except that it generates it).

19

	Cast-as-Intended Mechanism with Return Codes Based on PETs Extended Version

