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Abstract. There have been intensive research efforts in the last two decades or so
to design and deploy electronic voting (e-voting) protocols/systems which allow
voters and/or external auditors to check that the votes were counted correctly.
This security property, which not least was motivated by numerous problems in
even national elections, is called verifiability. It is meant to defend against voting
devices and servers that have programming errors or are outright malicious. In
order to properly evaluate and analyze e-voting protocols w.r.t. verifiability, one
fundamental challenge has been to formally capture the meaning of this security
property. While the first formal definitions of verifiability were devised in the late
1980s already, new verifiability definitions are still being proposed. The definitions
differ in various aspects, including the classes of protocols they capture and even
their formulations of the very core of the meaning of verifiability. This is an
unsatisfying state of affairs, leaving the research on the verifiability of e-voting
protocols in a fuzzy state.
In this paper, we review all formal definitions of verifiability proposed in the
literature and cast them in a framework proposed by Küsters, Truderung, and Vogt
(the KTV framework), yielding a uniform treatment of verifiability. This enables
us to provide a detailed comparison of the various definitions of verifiability from
the literature. We thoroughly discuss advantages and disadvantages, and point
to limitations and problems. Finally, from these discussions and based on the
KTV framework, we distill a general definition of verifiability, which can be
instantiated in various ways, and provide precise guidelines for its instantiation.
The concepts for verifiability we develop should be widely applicable also beyond
the framework used here. Altogether, our work offers a well-founded reference
point for future research on the verifiability of e-voting systems.
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1 Introduction

Systems for electronic voting (e-voting systems) have been and are being employed in
many countries for national, state-wide and municipal elections, for example in the US,
Estonia, India, Switzerland, France, and Australia. They are also used for elections within
companies, organizations, and associations. There are roughly two types of e-voting
systems: those where the voter has to go to a polling station in order to cast her vote
using a voting machine and those that allow the voter to cast her vote remotely over the



Internet, using her own device. When voting at a polling station, the voter either has to
fill in a paper ballot, which then is scanned by an optical scan voting system, or the voter
enters her vote into a machine directly, a so-called Direct Recording Electronic (DRE)
voting system.

For most voting systems used in practice today, voters have no guarantees that their
votes have actually been counted: the voters’ devices, voting machines, and/or voting
servers might have (unintentional or deliberate) programming errors or might have
been tampered with in some other way. In numerous elections it has been demonstrated
that the employed systems can easily be manipulated (e.g., by replacing hardware
components in voting machines) or that they contained flaws that made it possible
for more or less sophisticated attackers to change the result of the elections (see, e.g.,
[28,14,2,3,51,52,47,24]). In some occasions, announced results were incorrect and/or
elections had to be rerun (see, e.g., [1,4]). Given that e-voting systems are complex
software and hardware systems, programming errors are unavoidable and deliberate
manipulation of such systems is often hard or virtually impossible to detect.

Therefore, there has been intensive and ongoing research in the last two decades or so
to design e-voting protocols and systems5 which provide what is called verifiability (see,
e.g., [20,30,17,6,15,10,9,19,33,26,32]). Roughly speaking, verifiability means that voters
and possibly external auditors should be able to check whether the votes were actually
counted and whether the published election result is correct, even if voting devices and
servers have programming errors or are outright malicious. Several of such systems have
already been deployed in real binding elections (see, e.g., [6,15,7,43,13,49,21,25]).

For the systematic security analysis of such systems and protocols, one challenge
has been to formally and precisely capture the meaning of verifiability. While the
first attempts at a formal definition stem from the late 1980s [12], new definitions are
still being put forward, with many definitions having been proposed in the last few
years [16,34,31,36,19,33,32,46,48]. The definitions differ in many aspects, including the
classes of protocols they capture, the underlying models and assumptions, the notation,
and importantly, the formulations of the very core of the meaning of verifiability.

This is an unsatisfying state of affairs, which leaves the research on the verifiability of
e-voting protocols and systems in a fuzzy state and raises many questions, such as: What
are the advantages, disadvantages, problems, and limitations of the various definitions?
How do the security guarantees provided by the definitions compare? Are they similar
or fundamentally different? Answering such questions is non-trivial. It requires some
common basis on which the definitions can be discussed and compared.

Contribution of this paper. First, we show that the essence of all formal definitions of
verifiability proposed in the literature so far can be cast in one framework. We choose
the framework proposed by Küsters, Truderung, and Vogt [36] for this purpose. The
generic definition of verifiability in this framework is applicable to essentially any kind
of protocol, with a flexible way of dealing with various trust assumptions and types
of corruption. Most importantly, it allows us to capture many kinds and flavors of
verifiability.

5 In what follows, we use the terms protocols and systems interchangeably. We point out, however,
that this work is mostly concerned with the protocol aspects of e-voting rather than specific
system aspects.
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The casting of the different definitions in one framework is an important contribution
by itself as it yields a uniform treatment of verifiability. This uniform treatment enables
us to provide a detailed and systematic comparison of the different formal definitions of
verifiability proposed in the literature until now. We present thorough discussions of all
relevant definitions and models concerning their advantages, disadvantages, problems,
and limitations, resulting in various new insights concerning the definitions itself and
their relationships. Among others, it turns out that while the definitions share a common
intuition about the meaning of verifiability, the security guarantees that are actually
captured and formalized often vary, with many technical subtleties involved. Cast in
tailored models, different, sometimes implicit, and often unnecessary assumptions about
the protocol structure or the trust assumptions are made. For some definitions, we point
out severe limitations and weaknesses.

Finally, we distill these discussions and insights into detailed guidelines that highlight
several aspects any verifiability definition should cover. Based on the KTV framework,
we provide a solid, general, and flexible verifiability definition that covers a wide range of
protocols, trust assumptions, and voting infrastructures. Even if alternative frameworks
are used, for example in order to leverage specific proof techniques or analysis tools,
our guidelines provide insights on which parameters may be changed and what the
implications of such modifications are. This lays down a common, uniform, and yet
general basis for all design and analysis efforts of existing and future e-voting protocols.
As such, our work offers a well-founded reference point for future research on the
verifiability of e-voting systems and protocols.
Structure of this paper. In Section 2, we introduce some notation which we use
throughout this paper. We briefly recall the KTV framework in Section 3. In Sections 4
to 8 we then cast various definitions in this framework and based on this we carry
out detailed discussions on these definitions. Further definitions are briefly discussed
in Section 9, with some of them treated in detail in the appendix. The mentioned
definitions and guidelines we distill from our discussions, together with various insights,
are presented in Section 10.

2 Notation and Preliminaries

Next, we provide some background on e-voting and introduce notation that we use
throughout the paper.

In an e-voting protocol/system, a voter, possibly using some voter supporting device
(VSD) (e.g., a desktop computer or smartphone), computes a ballot, typically containing
the voter’s choice in an encrypted or encoded form, and casts it. Often this means that
the ballot is put on a bulletin board (see also below). The ballots are collected (e.g., from
the bulletin board) and tallied by tellers/voting authorities. In modern e-voting protocols,
the tallying is, for example, done by combining all ballots into one, using homomorphic
encryption, and then decrypting the resulting ballot, or by using mix-nets, where the
ballots before being decrypted are shuffled. At the beginning of an election, the voting
authorities produce the election parameters prm, typically containing keys and a set
of valid choices C, the choice space. In general, C can be an arbitrary set, containing
just the set of candidates, if voters can choose one candidate among a set of candidates,
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or even tuples of candidates, if voters can choose several candidates or rank them. We
emphasize that we consider abstention to be one of the choices in C.

In this paper, we denote the voters by V1, . . . ,Vn and their VSDs (if any) by
VSD1, . . . ,VSDn. In order to cast a vote, a voter Vi first picks her choice ci ∈ C. She
then runs her voting procedure Vote(ci), which in turn might involve providing her VSD
with her choice. The VSD runs some procedure VoteVSD, given certain parameters, e.g.,
the voters choice. The result of running the voting procedure is a ballot bi, which, for
example, might contain ci in encrypted form. Some models do not distinguish between
the voter and her VSD, and in such a case, we simply denote the voter’s voting procedure
by Vote.

Often voters have to perform some verification procedure during or at the end of
the election in order to prevent/detect malicious behavior by their VSDs or the voting
authorities. We denote such a procedure by Verify. This procedure might for example
involve checking that the voter’s ballot appears on the bulletin board or performing
certain cryptographic tasks. Carrying out Verify will often require some trusted device.

We denote the tellers by T1, . . . ,Tm. As mentioned, they collect the ballots, tally
them, and output the election result Tally, which belongs to what we call the result space
R (fixed for a given election). The result is computed according to a result function
ρ : Cn → R which takes the voters’ choices c = (c1, . . . ,cn) as input and outputs the
result. (Of course dishonest tellers might try to manipulate the election outcome, which
by the verifiability property, as discussed in the next section, should be detected.) The
result function should be specified by the election authorities before an election starts.

At the end or throughout the election, auditors/judges might check certain informa-
tion in order to detect malicious behavior. Typically, these checks are based solely on
publicly available information, and hence, in most cases their task can be carried out
by any party. They might for example check certain zero-knowledge proofs. In what
follows, we consider the auditors/judges to be one party J, who is assumed to be honest.

As already noted above, most election protocols assume an append-only bulletin
board B. An honest bulletin board stores all the input it receives from arbitrary partici-
pants in a list, and it outputs the list on request. Typically, public parameters, such as
public keys, the election result, voters’ ballots, and other public information, such as
zero-knowledge proofs generated by voting authorities, are published on the bulletin
board. As we will see, in most models (and many protocols) a single honest bulletin
board is assumed. However, trust can be distributed [22]. Providing robust and trustwor-
thy bulletin boards, while very important, is mainly considered to be a task orthogonal
to the rest of the election protocol. For this reason, we will mostly refer to the (honest)
bulletin board B, which in practice might involve a distributed solution rather than a
single trusted server.

3 The KTV Framework

In this section, we briefly recall the KTV framework [36], which is based on a gen-
eral computational model and provides a general definition of verifiability. As already
mentioned in the introduction, in the subsequent sections we use this framework to cast
all other formal definitions of verifiability. Here, we slightly simplify this framework
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without losing generality. These simplifications help, in particular, to smoothly deal with
modeling dynamic corruption of parties (see below).

3.1 Computational Model

Processes are the core of the computational model. Based on them, protocols are defined.

Process. A process is a set of probabilistic polynomial-time interactive Turing machines
(ITMs, also called programs) which are connected via named tapes (also called channels).
Two programs with a channel of the same name but opposite directions (input/output)
are connected by this channel. A process may have external input/output channels, those
that are not connected internally. At any time of a process run, one program is active
only. The active program may send a message to another program via a channel. This
program then becomes active and after some computation can send a message to another
program, and so on. Each process contains a master program, which is the first program
to be activated and which is activated if the active program did not produce output (and
hence, did not activate another program). If the master program is active but does not
produce output, a run stops.

We write a process π as π = p1 ‖ · · · ‖ pl , where p1 . . . , pl are programs. If π1 and
π2 are processes, then π1 ‖ π2 is a process, provided that the processes are connectible:
two processes are connectible if common external channels, i.e., channels with the
same name, have opposite directions (input/output); internal channels are renamed, if
necessary. A process π where all programs are given the security parameter 1` is denoted
by π(`). In the processes we consider the length of a run is always polynomially bounded
in `. Clearly, a run is uniquely determined by the random coins used by the programs in
π.

Protocol. A protocol P is defined by a set of agents Σ (also called parties or protocol
participants), and a program πa which is supposed to be run by the agent. This program
is the honest program of a. Agents are pairwise connected by channels and every agent
has a channel to the adversary (see below).6

Typically, a protocol P contains a scheduler S as one of its participants which acts as
the master program of the protocol process (see below). The task of the scheduler is to
trigger the protocol participants and the adversary in the appropriate order. For example,
in the context of e-voting, the scheduler would trigger protocol participants according to
the phases of an election, e.g., i) register, ii) vote, iii) tally, iv) verify.

If πa1 , . . . ,πan are the honest programs of the agents of P, then we denote the process
πa1 ‖ . . . ‖ πan by πP.

The process πP is always run with an adversary A. The adversary may run an arbitrary
probabilistic polynomial-time program and has channels to all protocol participants in
πP. Hence, a run r of P with adversary (adversary program) πA is a run of the process
πP ‖ πA. We consider πP ‖ πA to be part of the description of r, so that it is always clear
to which process, including the adversary, the run r belongs.

6 We note that in [36] agents were assigned sets of potential programs they could run plus an
honest program. Here, w.l.o.g., they are assigned only one honest program (which, however,
might be corrupted later on).
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The honest programs of the agents of P are typically specified in such a way that the
adversary A can corrupt the programs by sending the message corrupt. Upon receiving
such a message, the agent reveals all or some of its internal state to the adversary and
from then on is controlled by the adversary. Some agents, such as the scheduler or a
judge, will typically not be corruptible, i.e., they would ignore corrupt messages. Also,
agents might only accept corrupt message upon initialization, modeling static corruption.
Altogether, this allows for great flexibility in defining different kinds of corruption,
including various forms of static and dynamic corruption.

We say that an agent a is honest in a protocol run r if the agent has not been corrupted
in this run, i.e., has not accepted a corrupt message throughout the run. We say that an
agent a is honest if for all adversarial programs πA the agent is honest in all runs of
πP ‖ πA, i.e., a always ignores all corrupt messages.
Property. A property γ of P is a subset of the set of all runs of P.7 By ¬γ we denote
the complement of γ.
Negligible, overwhelming, δ-bounded. As usual, a function f from the natural num-
bers to the interval [0,1] is negligible if, for every c> 0, there exists `0 such that f (`)≤ 1

`c

for all ` > `0. The function f is overwhelming if the function 1− f is negligible. A
function f is δ-bounded if, for every c> 0 there exists `0 such that f (`)≤ δ+ 1

`c for all
` > `0.

3.2 Verifiability

The KTV framework comes with a general definition of verifiability. The definition
assumes a judge J whose role is to accept or reject a protocol run by writing accept
or reject on a dedicated channel decisionJ. To make a decision, the judge runs a so-
called judging procedure, which performs certain checks (depending on the protocol
specification), such as verification of all zero-knowledge proofs (if any). Intuitively, J
accepts a run if the protocol run looks as expected. The judging procedure should be
part of the protocol specification. So, formally the judge should be one of the protocol
participants in the considered protocol P, and hence, precisely specified. The input to the
judge typically is solely public information, including all information and complaints
(e.g., by voters) posted on the bulletin board. Therefore the judge can be thought of as a
“virtual” entity: the judging procedure can be carried out by any party, including external
observers and even voters themselves.

The definition of verifiability is centered around the notion of a goal of the protocol.
Formally, a goal is simply a property γ of the system, i.e. a set of runs (see Section 3.1).
Intuitively, such a goal specifies those runs which are “correct” in some protocol-specific
sense. For e-voting, intuitively, the goal would contain those runs where the announced
result of the election corresponds to the actual choices of the voters.

Now, the idea behind the definition is very simple. The judge J should accept a run
only if the goal γ is met, and hence, the published election result corresponds to the
actual choices of the voters. More precisely, the definition requires that the probability

7 Recall that the description of a run r of P contains the description of the process πP ‖ πA
(and hence, in particular the adversary) from which r originates. Hence, γ can be formulated
independently of a specific adversary.
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(over the set of all runs of the protocol) that the goal γ is not satisfied but the judge
nevertheless accepts the run is δ-bounded. Although δ = 0 is desirable, this would be
too strong for almost all e-voting protocols. For example, typically not all voters check
whether their ballot appears on the bulletin board, giving an adversary A the opportunity
to manipulate or drop some ballots without being detected. Therefore, δ = 0 cannot be
achieved in general.

By Pr[π(`) 7→ (J : accept)] we denote the probability that π, with security parameter
1`, produces a run which is accepted by J. Analogously, by Pr[π(`) 7→ ¬γ, (J : accept)]
we denote the probability that π, with security parameter 1`, produces a run which is not
in γ but nevertheless accepted by J.

Definition 1 (Verifiability). Let P be a protocol with the set of agents Σ . Let δ ∈ [0,1]
be the tolerance, J ∈ Σ be the judge and γ be a goal. Then, we say that the protocol
P is (γ,δ)-verifiable by the judge J if for all adversaries πA and π = (πP ‖ πA), the
probability

Pr[π(`) 7→ ¬γ, (J : accept)]

is δ-bounded as a function of `.

A protocol P could trivially satisfy verifiability with a judge who never accepts a
run. Therefore, one of course would also require a soundness or fairness condition. That
is, one would except at the very least that if the protocol runs with a benign adversary,
which, in particular, would not corrupt parties, then the judge accepts a run. Formally,
for a benign adversary πA we require that Pr[π(`) 7→ (J : accept)] is overwhelming. One
could even require that the judge accepts a run as soon as a certain subset of protocol
participants are honest, e.g., the voting authorities (see, e.g., [36] for a more detailed
discussion). These kinds of fairness/soundness properties can be considered to be sanity
checks of the judging procedure and are typically easy to check. Most definitions of
verifiability in the literature do not explicitly mention this property. For brevity of
presentation, we therefore mostly ignore this issue here as well. In the subsequent
sections, we, however, mention and briefly discuss fairness conditions unless addressed
by a definition.

Definition 1 captures the essence of the notion of verifiability in a very simple way, as
explained above. In addition, it provides great flexibility and it is applicable to arbitrary
classes of e-voting protocols. This is in contrast to most other definitions of verifiability,
as we will see in the subsequent sections, which are mostly tailored to specific classes
of protocols. This flexibility in fact lets us express the other definitions in terms of
Definition 1. There are two reasons for the flexibility. First, the notion of a protocol P
used in Definition 1 is very general: a protocol is simply an arbitrary set of interacting
Turing machines, with one of them playing the role of the judge. Second, the goal γ
provides great flexibility in expressing what an e-voting protocol is supposed to achieve
in terms of verifiability.

As mentioned in the introduction, in the following sections, we present all relevant
definitions of verifiability from the literature, discuss them in detail, and then express
their essence in terms of Definition 1. The latter, in particular, allows for a uniform
treatment of the various definitions from the literature, and by this a better understanding
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of the individual definitions and their relationships to other definitions. Advantages and
disadvantages of the definitions can be clearly seen in terms of the classes of protocols
that are captured by the definitions and the security guarantees that they give. It seems
particularly interesting to see which goals γ (in the sense defined above) these definitions
consider. In Section 10, among others, we use these insights to distill precise guidelines
for important aspects of definitions of verifiability and propose goals γ applicable to a
broad class of e-voting protocols, and hence, we provide a particularly useful instantiation
of Definition 1 given what we have learned from all definitions from the literature.

The following sections, in which we present and discuss the various definitions of
verifiability from the literature, are ordered in such a way that definitions that are close
in spirit are discussed consecutively. All sections follow the same structure. In every
section, we first briefly sketch the underlying model, then present the actual definition
of verifiability, followed by a discussion of the definition, and finally the casting of
the definition in Definition 1. We emphasize that the discussions about the definitions
provided in these sections reflect the insights we obtained by casting the definitions in
the KTV framework. For simplicity and clarity of the presentation, we, however, present
the (informal) discussions before casting the definitions.

4 A Specific Verifiability Goal by Küsters et al.

In [36], Küsters et al. also propose a specific family of goals for e-voting protocols that
they used in [36] as well as subsequent works [39,38,37]. We present this family of goals
below as well as the way they have instantiated the model when applied to concrete
protocols. Since this is a specific instantiation of the KTV framework, we can omit the
casting of their definition in this framework.

4.1 Model

When applying the KTV framework in order to model specific e-voting protocols, Küsters
et al. model static corruption of parties. That is, it is clear from the outset whether or not
a protocol participant (and in particular a voter) is corrupted. An honest voter V runs
her honest program πV with her choice c ∈ C provided by the adversary. This choice is
called the actual choice of the voter, and says how the voter intends to vote.

4.2 Verifiability

In [36], Küsters et al. propose a general definition of accountability, with verifiabil-
ity being a special case. Their verifiability definition, as mentioned, corresponds to
Definition 1. Their definition, however, also captures the fairness condition which we
briefly mentioned in Section 3.2. To this end, Küsters et al. consider Boolean formulas
with propositional variables of the form hon(a) to express constraints on the honesty
of protocol participants. Roughly speaking, given a Boolean formula ϕ, their fairness
condition says that if in a run parties are honest according to ϕ, then the judge should
accept the run.
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While just as in Definition 1, the verifiability definition proposed by Küsters et
al. does not require to fix a specific goal, for e-voting they propose a family {γk}k≥0
of goals, which has been applied to analyze various e-voting protocols and mix nets
[36,39,38,37].

Roughly speaking, for k ≥ 0, the goal γk contains exactly those runs of the voting
protocol in which all but up to k votes of the honest voters are counted correctly and
every dishonest voter votes at most once.

Before recalling the formal definition of γk from [36], we first illustrate γk by a
simple example. For this purpose, consider an election with five eligible voters, two
candidates, with the result of the election simply being the number of votes for each
candidate. Let the result function ρ (see Section 2) be defined accordingly. Now, let r be
a run with three honest and two dishonest voters such that A, A, B are the actual choices
of the honest voters in r and the published election result in r is the following: one vote
for A and four votes for B. Then, the goal γ1 is satisfied because the actual choice of one
of the honest voters choosing A can be changed to B and at the same time the choice
of each dishonest voter can be B. Hence, the result is equal to ρ(A,B,B,B,B), which is
the published result. However, the goal γ0 is not satisfied in r because in this case, all
honest voters’ choices (A,A,B) have to be counted correctly, which, in particular, means
that the final result has to contain at least two votes for A and at least one vote for B. In
particular, a final result with only two votes for A but none for B would also not satisfy
γ0, but it would satisfy γ1. (Recall from Section 2 that abstention is a possible choice.)

Definition 2 (Goal γk). Let r be a run of an e-voting protocol. Let nh be the number of
honest voters in r and nd = n−nh be the number of dishonest voters in r. Let c1, . . . ,cnh
be the actual choices of the honest voters in this run, as defined above. Then γk is
satisfied in r if there exist valid choices c̃1, . . . , c̃n such that the following conditions hold
true:

(i) The multiset {c̃1, . . . , c̃n} contains at least nh− k elements of the multiset {c1, . . . ,
cnh}.

(ii) The result of the election as published in r (if any) is equal to ρ({c̃1, . . . , c̃n}).

If no election result is published in r, then γk is not satisfied in r.

With this goal, Definition 1 requires that if more than k votes of honest voters
were dropped/manipulated or the number of votes cast by dishonest voters (which are
subsumed by the adversary) is higher than the number dishonest voters (ballot stuffing),
then the judge should not accept the run. More precisely, the probability that the judge
nevertheless accepts the run should be bounded by δ.

We note that the definition of γk does not require that choices made by dishonest
voters in r need to be extracted from r in some way and that these extracted choices need
to be reflected in {c̃1, . . . c̃n}: the multiset {c̃1, . . . , c̃n} of choices is simply quantified
existentially. It has to contain nh− k honest votes but no specific requirements are made
for votes of dishonest voters in this multiset. They can be chosen fairly independently
of the specific run r (except for reflecting the published result and the requirement that
there is at most one vote for every dishonest voter). This is motivated by the fact that,
in general, one cannot provide any guarantees for dishonest voters, since, for example,
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their ballots might be altered or ignored by dishonest authorities without the dishonest
voters complaining (see also the discussion in [36]).

4.3 Discussion

The goal γk makes only very minimal assumptions about the structure of a voting system.
Namely, it requires only that, given a run r, it is possible to determine the actual choice
(intention) of an honest voter and the actual election result. Therefore, the goal γk can be
used in the analysis of a wide range of e-voting protocols.

One drawback of the goal γk is that it assumes static corruption. Another disadvantage
of γk (for k > 0) is the fact that it does not distinguish between honest votes that are
dropped and those that are turned into different valid votes, although the impact on the
final result by the second kind of manipulation is stronger than the one by the first kind.
To illustrate this issue, consider two voting protocols P1 and P2 (with the result function
ρ being the counting function). In P1 the adversary might not be able to turn votes by
honest voters into different valid votes, e.g., turn a vote for candidate A into a vote for
B. This can be achieved if voters sign their ballots. In this case, the adversary can only
drop ballots of honest voters. In P2 voters might not sign their ballots, and hence, the
adversary can potentially manipulate honest votes. Now, P1 obviously offers stronger
verifiability because in P1 votes of honest voters can only be dropped, but not changed:
while in P2 the adversary could potentially turn five honest votes, say for candidate A,
into five votes for B, in P1 one could at most drop the five honest votes, which is less
harm. Still both protocols might achieve the same level of verifiability in terms of the
parameters γk and δ. If γk distinguished between dropping of votes and manipulation,
one could distinguish the security levels of P1 and P2.

In Section 10 we propose a new goal which solves the mentioned problems.

5 Verifiability by Benaloh

In this section, we study the verifiability definition by Benaloh [12]. This definition
constitutes the first formal verifiability definition proposed in the literature, and hence,
the starting point for the formal treatment of verifiability. This definition is close in its
essence to the one discussed in Section 4.

5.1 Model

Following [12], an l-threshold m-teller n-voter election system (or simply (l,m,n)-
election system) E is a synchronous system of communicating processes (probabilistic
Turing machines) consisting of m tellers T1, . . . ,Tm, n voters V1, . . . ,Vn and further
participants. Each process of an election system controls one bulletin board. Each
bulletin board can be read by every other process, but only be written by the owner.

The intended (honest) behavior of the system participants is specified by an election
schema. An (l,m,n)-election schema S consists of a collection of programs to be used
by the participants of an (l,m,n)-election system and an efficiently computable function
check, which, given the security parameter ` and the messages posted to the public
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bulletin boards, returns either ”good” or ”bad”. The election schema S describes a
program πT for each teller process and two possible programs for each voter: πyes to be
used to cast a ”yes” vote and program πno to be used to cast a ”no” vote. At the end of
the election, each teller Tk releases a value τk.

Any process which follows (one of) its program(s) prescribed by S is said to be proper.
We say that a voter casts a valid “yes” vote, if the messages it posts are consistent with
the program πyes, and similarly for a “no” vote. Note that a proper voter, by definition,
always casts a valid vote; an improper voter may or may not cast a valid vote, and if it
does not cast a valid vote, that fact may or may not be detectable by others.

The tally of an election is the pair (tyes, tno) where tyes and tno are the numbers of
voters who cast valid ”yes” and ”no” votes, respectively. Note that this pair expresses
the expected result corresponding to the cast valid votes. The tally of the election is
said to be correct if ρ(τ1, . . . , τm) = (tyes, tno), where ρ is a pre-determined function. The
expression ρ(τ1, . . . , τm) describes the actual tally, that is the result of the election as
jointly computed by the tellers (and combined using the function ρ).

5.2 Verifiability

Now, in [12], verifiability is defined as follows.

Definition 3 (Verifiability). Let δ be a function of `. The (l,m,n)-election schema S is
said to be verifiable with confidence 1− δ if, for any election system E, check satisfies
the following properties for random runs of E using security parameter `:

(1) If at least l tellers are proper in E, then, with probability at least 1− δ(`), check
returns good and the tally of the election is correct.

(2) The joint probability that check returns good and the election tally is not correct is
at most δ(`).

The election schema S is said to be verifiable if δ is negligible.

Condition (1) of Definition 3 expresses a fairness condition (see Section 3.2), where
to guarantee the successful (and correct) run of a protocol, it is enough to only assume
that l tellers are honest.

Condition (2) of Definition 3 is the core of Definition 3. Roughly speaking, it
corresponds to Definition 1 with the goal γ0 defined by Küsters et al. (see Section 4.2).
As discussed below, there are, however, subtle differences, resulting in a too strong
definition.

5.3 Discussion

As mentioned before, Benaloh’s definition constitutes the first formal verifiability defini-
tion, mainly envisaging an entirely computer-operated process based on trusted machines
and where, for example, voters were not asked to perform any kind of verification. Given
this setting, the definition has some limitations from a more modern point of view.

Similarly to the definition in Section 4, this definition is fairly simple and general,
except that only yes/no-votes are allowed, tellers are explicitly required in this definition,
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and every participant has his/her own bulletin board. These restrictions, however, are not
necessary in order to define verifiability as illustrated in Section 4. This definition also
focuses on static corruption. The main problem with this definition is that it is too strong
in settings typically considered nowadays, and hence, it would exclude most e-voting
protocols, even those that intuitively should be considered verifiable.

As already mentioned, Condition (2) of Definition 3 is related to the goal γ0. The
goal γ0 is, however, typically too strong because, for example, not all honest voters
perform the verification process, e.g., check whether their ballots actual appear on the
bulletin board. Hence, there is a non-negligible chance that the adversary is not caught
when dropping or manipulating ballots. This is why Küsters et al. (Section 4) considered
goals γk for k ≥ 0.

Moreover, the goal considered here is even stronger (see also Section 5.4). Condition
(2) in Definition 3 is concerned not only with honest voters, but also with dishonest
ones who post messages consistent with honest programs. Now, the problem is that a
dishonest voter could simply cast a vote just like an honest one. The dishonest voter may,
however, never complain even if dishonest tellers (who might even team up with the
dishonest voter) drop or manipulate the ballot of the dishonest voter. Hence, it cannot be
guaranteed that votes of such dishonest voters are counted, unlike what Condition (2)
in Definition 3 requires. So, Definition 3 would deem almost all e-voting protocols in
settings typically considered nowadays insecure, even completely reasonable ones.

Also, Condition (1) of Definition 3 may be too strong in many cases. It says that the
threshold of l tellers is enough to guarantee that a protocol run is correct, i.e., in terms of
the KTV framework, the judge would accept the run. It might not always be possible
to resolve disputes, for example, when voters complain (possibly for no reason). For
the sake of generality of the definition, it would therefore be better to allow for a more
flexible fairness condition, as the one sketched in Section 4.

5.4 Casting in the KTV Framework

We now cast Definition 3 in the KTV Framework. To this end, we have to define the
class of protocols considered in [12] in terms of the KTV Framework and the goal γ.
Protocol PB. The set of agents Σ consists of the voters, the tellers, the judge J, one
bulletin board for each of these participants, and the remaining participants. Since static
corruption is considered, the agents accept a corrupt message only at the beginning of
an election run. The bulletin boards and the judge do not accept corrupt message at all.
As usual, we consider an additional honest party, the scheduler. The honest programs are
defined as follows:

– The scheduler behaves in the expected way: it triggers all the parties in every protocol
step. The judge is triggered in the final phase, after the tellers are supposed to output
their (partial) tallying.

– The honest behavior of the bulletin boards is as described in Section 2, with the only
difference that a bulletin board owned by some party accepts messages posted only by
this party; it serves its content to all parties, though.

– When a voter V runs her honest program πV, she first expects ”yes” or ”no” as input
(if the input is empty, she stops). If the input is ”yes”, she runs πyes, and otherwise
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πno. She sends the result to her bulletin board B(V); πV might later be triggered again
to perform verification steps.

– When the judge J runs πJ and is triggered in the final phase, it reads the content of all
the bulletin boards and computes the result of the function check on this content. If
check evaluates to ”good”, it outputs ”accept”, and otherwise ”reject”.

– The honest program πT of T depends on the concrete election system that is used.

The goal. We define the goal γ∗0 to be γ0 (see Definition 2), with the difference that,
instead of considering the multiset c1, . . . ,cnh of choices of honest voters only, we now
consider the multiset of choices of all voters who cast a valid vote. This, as explained,
includes not only honest voters, but might also include some dishonest voters.

Verifiability. Now, it should be clear that the notion of verifiability defined by Benaloh
can be characterized in terms of Definition 1 as (γ∗0 , δ)-verifiability.8 As discussed before,
the goal γ∗0 is too strong for several reasons.

6 E2E Verifiability by Kiayias et al.

In this section, we study the end-to-end verifiability definition by Kiayias et al. [33,32].

6.1 Model

According to Kiayias et al., an e-voting scheme Π is a tuple (Setup, Cast, Tally, Result,
Verify) of probabilistic polynomial-time (ppt) algorithms where Cast and Tally are
interactive. The entities are the election authority EA, the bulletin board B, the tellers
T1, . . . ,Tm and the voters. The algorithm Cast is run interactively between B and a voter
Vi where the voter operates a voter supporting device VSD on the following inputs: public
parameters prmpub, a choice ci, and her credentials credi. Upon successful termination,
Vi obtains a receipt αi. The algorithm Tally is run between EA, the tellers and B. This
computation updates the public transcript τ . The algorithm Verify(τ ,αi) denotes the
individual verification of the public transcript τ by voter Vi, while Verify(τ ,sti) denotes
the verification of τ by teller Ti on her private state sti; the output of Verify is a bit.
The algorithm Setup is run for setting up an election, and the algorithm Result, given τ ,
outputs the result of the election, if any.

6.2 E2E Verifiability

The E2E-verifiability definition by Kiayias et al. [33,32] is given in Figure 1. The
adversary can corrupt voters and tellers, and he controls the EA and the VSDs of voters.
The bulletin board is assumed to be honest, but the adversary can determine the content
τ of it. The set Vcast contains all voters who successfully terminated their protocol, and
hence, obtained a receipt. However, they might not have verified their receipts. The
adversary wins the game if (i) |Vcast| ≥ θ, i.e., not to few voters successfully terminated,
and (ii) all of these voters if they verified their receipt, would verify successfully, and

8 Recall that here we do not consider the fairness conditions.
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E2E Verifiability Game GA,Extr,k,θ(1`,w,n, t)

1. A chooses a list of choices C = {c1, . . . ,cw}, a set of
voters {V1, . . . ,Vn}, and a set of tellers {T1, . . . ,Tt}. It
provides the challenger Ch with these sets along with in-
formation prmpub and voter credentials {credi}1≤i≤ n.
Throughout the game, Ch plays the role of B.

2. A and Ch engage in an interaction where A schedules
the Cast protocols of all voters. For each voter Vi, A can
either completely control the voter or allow Ch operate
on Vi’s behalf, in which case A provides a choice ci
to Ch. Then, Ch engages in the Cast protocol with
the adversary A, so that A plays the roles of EA and
VSD. Provided the protocol terminates successfully, Ch
obtains a receipt αi on behalf of Vi.

3. Finally, A posts the election transcript τ to B.

The game returns a bit which is 1 if the following conditions
hold true:

i) |Vcast| ≥ θ, (i.e., at least θ honest voters terminated)
ii) ∀Vi ∈ Vcast : Verify(τ ,αi) = 1 (i.e. the honest voters

that terminated verified successfully)
and either one of the following two conditions:

(iii-a). If ⊥ 6= (ci)Vi /∈Vcast
← Extr(τ ,{αi}Vi∈Vcast

), then
d1(Result(τ),ρ(c1, . . . ,cn))≥ k (d1 is a metric).

(iii-b). ⊥← Extr(τ ,{αi}Vi∈Vcast
)

Fig. 1. E2E-verifiability by Kiayias et al.

(iii) the published result of the election Result(τ) deviates by at least k from the actual
result ρ(c1, . . . ,cn) obtained according to the actual votes of voters. More specifically,
for the last condition, i.e., Condition (iii), Kiayias et al. postulates the existence of a vote
extractor algorithm Extr (not necessarily running in polynomial-time) which is supposed
to determine the votes of all voters not in Vcast, where Extr is given the transcript and
the receipt of voters in Vcast as input. Note that the adversary wins the game if Extr fails
to return these votes (Condition (iii-b)).

Definition 4 (E2E-verifiability). Let 0 < δ < 1 and n,w,k, t,θ ∈ N with k > 0 and
0< θ≤ n. The election protocol Π w.r.t. election function achieves E2E verifiability with
error δ, for a number of at least θ honest successful voters and tally deviation k if there
exists a vote-extractor Extr such that for any adversary A controlling less than n− θ
voters and t tellers, the EA and all VSD’s holds: Pr

[
GA,Extr,k,θ(1`,w,n, t) = 1

]
≤ δ.

We note that [33] considers a fairness condition (named perfect correctness) similarly
to the one in Section 3.2.
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6.3 Discussion

We first note that the definition is too specific in some situations due to the use of
the extractor in the definition. Indeed, it does not seem to apply to voting protocols
where ballots published on the bulletin board hide the choices of voters information-
theoretically, such as [23]. In this case, the adversary could, for example, corrupt some
voters but just follow the protocol honestly. For these voters and those in Vcast the
extractor could not determine their votes, and hence, it would be very likely that the
adversary wins the game in Figure 1: if the extractor outputs votes, then it would be
very likely that Condition (iii-a) is satisfied, and otherwise Condition (iii-b) would be
satisfied.

This problem can be fixed by providing the extractor with the votes of the voters
in Vcast, not only with their receipts. In this case, the extractor could simply compute
Result(τ) and choose (ci)Vi /∈Vcast

such that d1(Result(τ),ρ(c1, . . . ,cn)) is minimal. This
would be the best extractor, i.e., the one that makes it the hardest for the adversary to
win the game. Note that this extractor does not have to actually extract votes from τ , or
even look closely at τ , except for computing Result(τ).

Conditions (iii-a) and (iii-b) could therefore be replaced by the following one:

(iii)* For any combination of choices (ci)Vi /∈Vcast
:

d1(Result(τ),ρ(c1, . . . ,cn))≥ k.

This is then similar to Definition 2 where votes of dishonest voters are quantified
existentially. (Note that (iii)* talks about when verifiability is broken, while Definition 2
talks about the goal, i.e., what verifiability should achieve, hence the switch from
existential quantification in Definition 2 to universal quantification in (iii)*). As explained
in Section 4, the existential quantification is very reasonable because, for several reasons,
it is often not possible to extract votes of dishonest voters.

Our second observation is that the definition (even the version with the fix above)
is too weak in the following sense. To see this, consider runs where honest voters cast
their votes successfully, and hence, obtain a receipt, but do not verify their receipt, and
where the verification would even fail. Because of Condition (ii), the adversary would
right away loose the game in these runs. However, these runs are realistic threats (since
often voters do not verify), and hence, guarantees should be given even for such runs.
The game in Figure 1 simply discards such runs. Therefore, instead of Condition (ii)
one should simply require that the judge (looking at τ and waiting for complaints from
voters, if any) accepts the run. Note that if the judge does not accept the run, then the
election is invalid.

6.4 Casting in the KTV Framework

Protocol PKZZ . The set of agents Σ consists of the voters, the bulletin board B, the
voting authority EA, the judge J, the tellers T1, . . . ,Tm and the remaining participants.

When a voter V runs her honest program πV in the casting phase, she expects a
choice c, a credential and the public parameters of the election (if her input is empty, she
stops). Then, she runs Cast in interaction with B, and expects a receipt α (if she does not
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receive a receipt, she stops). When the voter is triggered by the judge in the verification
phase, the voter reads the election transcript τ from the bulletin board B (if she does not
receive τ , she outputs ”reject”) and runs Verify(τ ,α). If Verify(τ ,α) evaluates to ”false”
or ”true”, respectively, she sends ”reject” or ”accept” to the judge J. The definition of
Kiayias et al. is not explicit about whether voters always verify when triggered or not.
So here one could also model that they decide whether they verify according to some
probability distribution.

When a teller T runs its honest program πT in the setup phase, it interacts with the
remaining tellers, the EA and B. It expects as output its secret state st (otherwise, it
stops). In the tally phase, on input st and the contents of B (if any input is empty, it
stops), it runs Tally in interaction with B and EA, and outputs a partial tally ta that is
sent to EA.

When the election authority EA runs its honest program πEA, it expects a security
parameter 1` in the setup phase (if the input is empty, it stops). Then, it runs Setup
in interaction with B and the tellers, and outputs the election parameters, which are
published in B, and the voters’ credentials (cred1, . . . ,credn), which are sent to the
corresponding voters (V1, . . . ,Vn). In the tally phase, EA runs Tally in interaction with
B and the tellers, and publishes the partial tally data ta1, . . . , tam produced by each teller
at the end of the interaction.

When the judge J runs its honest program πJ and is triggered in the verification
phase, it reads the election transcript τ . It performs whatever check prescribed by the
protocol. If one of these checks fails, J outputs “reject”. Otherwise, J iteratively triggers
all voters and asks about their verification results (if any). If one of the voters rejects, J
outputs “reject”, and otherwise, “accept”.

E2E verifiability. We define the goal γθ,k,Extr, which is parameterized by θ, k, and
Extr as in Figure 1, to be the set of runs of PKZZ (with some adversary A) such that at
least one of the Conditions (i), (ii), (iii-a) or (iii-b) in Figure 1 is not satisfied. With
this, Definition 4, corresponds to the notion of (γθ,k,Extr, δ)-verifiability according to
Definition 1 when the same extractors are used and one quantifies over the same set of
adversaries.

As already discussed above, this definition on the one hand is too specific (due to the
use of the extractor) and on the other hand too weak (due to Condition (ii)). Therefore,
as mentioned, the definition would be improved if Conditions (iii-a) and (iii-b) were
replaced by (iii)* and Condition (ii) was replaced by the condition that the judge accepts
the run. If one set θ = 0 in addition, then Definition 4 would closely resemble γk from
Definition 2.

7 Computational Election Verifiability by Cortier et al.

In this section, we study the definition of verifiability by Cortier et al. [19], which can
be seen as an extension of a previous verifiability definition by Catalano et al. [31],
whereby the bulletin board may act maliciously, and thus it could potentially perform
ballot stuffing (i.e. stuff itself with self-made ballots on behalf of voters who did not
vote) or erase ballots previously cast by voters.
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7.1 Model

Cortier et al. [19] model an e-voting scheme Π as a tuple (Setup, Credential, Vote,
VerifyVote, Valid, Board, Tally, Verify) of ppt algorithms where VerifyVote and Verify
are non-interactive. The entities are the registrar Reg, the bulletin board B, the teller T
and the voters. The algorithm Setup(`) is run by the teller T, and outputs the public pa-
rameters of the election prmpub and the secret tallying key sk. The procedure Credential
is run by Reg with the identity idi of voter Vi, and outputs a public/secret credential
pair (upki,uski). The algorithms discussed next implicitly take prmpub as input. The
algorithm Vote is run interactively between B and a voter Vi, on inputs prmpub, a choice
ci and her credentials (upki,uski). Upon successful termination, a ballot bi is appended to
the public transcript τ of the election. The procedure Valid(b) outputs 1 or 0 depending
on whether b is well-formed. Board denotes the algorithm that B must run to update τ .
The algorithm Tally is run at the end of the election by T, given the content of B and the
secret key sk as input, and outputs tallying proofs P and the final election result Result.
VerifyVote(τ ,upki,uski,b) is an algorithm run by voter Vi that checks whether ballot
b appears in τ . The algorithm Verify(τ ,Result,P) denotes the verification of the result
of the election, while VerifyVote(τ ,upki,bi) denotes the verification that ballot bi from
voter Vi was included in the final transcript of the election as published by B.

7.2 Verifiability Against Malicious Bulletin Board

In the e-voting system Helios [6], a dishonest bulletin board B may add ballots, since it
is the sole entity checking the eligibility of voters. If B is corrupted, then it might stuff
the ballot box with ballots on behalf of voters that in fact did not vote. This problem,
as already mentioned in Section 4.2, is called ballot stuffing. The work in [19] gives a
definition of verifiability in the computational model to account for a malicious bulletin
board. To defend voters against a dishonest B, a registration authority Reg is required.
Depending on whether both B and Reg are required to be honest, [19] defines weak
verifiability (both are honest) or strong verifiability (not simultaneously dishonest).

In Figure 2 we give a snapshot of the cryptographic game used in [19] to define
verifiability in case B is dishonest. The adversary has oracles to register voters, corrupt
voters, and let honest voters vote. The condition for winning the game is explained below.
Note that Cortier et al. assume that the result function admits partial counting, namely
ρ(S1 ∪ S2) = ρ(S1) ?R ρ(S2) for any two lists S1,S2 containing sequences of elements
c ∈ C and where ?R : R×R→ R is a commutative operation. For example, the standard
result function that counts the number of votes per candidate admits partial counting.

Definition 5 (Verifiability against malicious bulletin board). An election scheme
achieves verifiability against the bulletin board if the success rate Succ(ExpverbA,Π ) =

Pr[ExpverbA,Π (`) = 1] of any ppt adversary A is negligible as a function of `, where ExpverbA,Π

is defined as in Figure 2.

Roughly speaking, this definition declares a protocol verifiable if, in the presence of
a malicious bulletin board (which can erase previous cast ballots and/or cast ballots on
behalf of absentee voters), voters who check that their ballot has not been removed are
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Experiment ExpverbA,Π

Adversary A has access to the following oracles:

– Oreg(id): creates voters’ credentials via
(upkid ,uskid)←Credential(id), stores them as
U = U ∪{(id,upkid ,uskid)}, and returns upkid to the
attacker.

– Ocorrupt(id): firstly, checks if an entry (i,∗,∗) ap-
pears in U ; if not, stops. Else, gives (upkid ,uskid)
to A, updates a list of corrupted voters C U = C U ∪
{(i,upkid)} and updates the list of honest cast ballots
HVote by removing any occurrence (id,∗,∗).

– Ovote(id,c): if (i,∗,∗) /∈ U , or (i,∗) ∈ C U , aborts;
else returns b = Vote(i,upkid ,uskid ,c) and replaces
any previous entry (id,∗,∗) in HVote with (i,c,b). The
latter list is used to record the voter’s intention.

Let Checked⊆ HVote contain those id’s who checked that
their ballot appears in τ at the end of the election. The ex-
periment outputs a bit as follows, with 1 meaning that the
attacker was successful:

(1) (τ ,Result,P)←AOreg,Ocorrupt,Ovote

(2) if Verify(τ ,Result,P) = 0 return 0

(3) if Result=⊥ return 0

(4) if ∃ (iA1 ,cA
1 ,∗), . . . ,(iAnA

,cA
nA
,∗) ∈ HVote\Checked

∃ cB
1 , . . . ,c

B
nB
∈ C s.t. 0≤ nB ≤ |C U | s.t.

Result= ρ
(
{cE

i }
nE
i=1
)
?R ρ

(
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i }
nA
i=1
)
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(
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i }
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)

return 0 else return 1

where Checked= {(iE1 ,cE
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E
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,bE

nE
)}

Fig. 2. Verifiability against bulletin board by Cortier et al. [19]

guaranteed that their choice has been counted in the final result. Also some of the votes
of honest voters who did not check might also be contained in the final result. However,
their votes may as well have been dropped (but not altered to other votes). Voters under
adversarial control can only vote once, with choices belonging to the choice space. The
bulletin board cannot stuff itself with additional ballots without getting caught.

7.3 Verifiability Against Malicious Registrar

In Helios, the bulletin board B accepts only ballots cast by eligible voters. The bulletin
board B can tell apart eligible from ineligible voters generally by using some kind of
authentication mechanism. In this situation, one might hope to enjoy verifiability against
a dishonest registrar Reg, which is defined in Figure 3.
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Experiment ExpvergA,Π

Adversary A has access to the oracle Ovote,Ocorrupt as
before, and additionally Ocast, that allows A to cast ballots
to B on behalf of corrupted voters, as follows:

– Ocast(id,b): run Board(τ ,b).

Let HVote and Checked be the lists defined before. Recall
that HVote contains entries of the form (id,c,b), that stand
for honest voters’ choices. The experiment outputs a bit as
follows:

(1) (Result,P)←AOcast,Ocorrupt,Ovote

(2) if Verify(τ ,Result,P) = 0 return 0

(3) if Result=⊥ return 0

(4) if ∃ (iA1 ,cA
1 ,∗), . . . ,(iAnA

,cA
nA
,∗) ∈ HVote\Checked

∃ cB
1 , . . . ,c

B
nB
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return 0 else return 1
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Fig. 3. Verifiability against registrar by Cortier et al. [19]

Definition 6 (Verifiability against malicious registrar). An election scheme achieves
verifiability against the registrar if the success rate Succ(ExpvergA,Π ) = Pr[ExpvergA,Π (`) = 1]
of any ppt adversary A is negligible as a function of `, where ExpvergA,Π is defined as in
Figure 3.

The intuition behind and the guarantees provided by Definition 6 are similar to those
of Definition 5 except that instead of a malicious bulletin board a malicious registrar is
considered, which thus can handle credentials for voters in a malicious way, i.e. provide
invalid credentials or make several users share the same credentials.

7.4 Strong Verifiability

A protocol is said to have strong verifiability if it enjoys verifiability against a dishonest
registrar and verifiability against a dishonest bulletin board. Intuitively, this allows one to
give verifiability guarantees under a weaker trust assumption than that used in Section 6
since for strong verifiability we do not need the bulletin board and the registrar to be
simultaneously honest; in Section 5, it was assumed that every party has its own bulletin
board, and in Sections 4, no specific trust assumptions were fixed or assumed.

We note Cortier et al. also consider a fairness (correctness) condition similar to the
ones mentioned above: the result corresponds to the votes of honest voters whenever all
the parties (Reg,T,B), including the voters, are honest.
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Experiment ExpverwA,Π

Adversary A has access to the oracles
Ovote,Ocorrupt,Oreg and Ocast defined before in
this section. Let HVote the list containing the intended
choices of the honest voters. The experiment outputs a bit as
follows:

(1) (Result,P)←AOcast,Ocorrupt,Ovote,Ocast

(2) if Verify(τ ,Result,P) = 0 return 0
(3) if Result=⊥ return 0
(4) if ∃ (iA1 ,cA

1 ,∗), . . . ,(iAnA
,cA
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1 , . . . ,c
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return 0 else return 1

Fig. 4. Weak verifiability by Cortier et al. [19]

7.5 Weak Verifiability

For weak verifiability, the trust assumptions are stronger: both the registrar Reg and the
board B are assumed to be honest. This means, in particular, that B does not remove
ballots, nor stuffs itself; and that Reg faithfully distributes credentials to the eligible
voters. The formal definition is given in Figure 4.

Intuitively, weak verifiability guarantees that all votes that have been successfully
cast are counted and that dishonest voters can only vote once; additionally only choices
belonging to the choice space can be cast and counted.

7.6 Tally Uniqueness

As part of their definitional framework for verifiability, Cortier et al. [19] and Juels et
al. [31], require the notion of tally uniqueness. Roughly speaking, tally uniqueness of a
voting protocol ensures that the tally of an election is unique, even if all the players in
the system are malicious.

More formally, the goal of the adversary against tally uniqueness is to output public
election parameters prmpub, a public transcript τ , two results Result 6= Result′, and
corresponding proofs of valid tallying P and P′ such that both pass verification, i.e.
Verify(τ ,Result,P) = Verify(τ ,Result′,P′) = 1. A voting protocol Π has tally unique-
ness if every ppt adversary A has a negligible advantage in this game.

Following [19], tally uniqueness ensures that, given a tally, there is at most one
plausible instantiation (one-to-one property).

7.7 Discussion

Strong verifiability explicitly captures the situation where key players in an electronic
election, such as the bulletin board or the registrar, might be corrupted and willing to
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alter the legitimate operation of the election. This is notably the case for Helios without
identifiers (i.e. the transcript τ does not contain voters’ identifiers), where a malicious B
can stuff itself with ballots on behalf of absentee voters. Additionally, strong verifiability
provides stronger guarantees, compared to previous definitions, to honest voters: ballots
from honest voters that do not verify successfully at the end of the election can at worst
be removed from the election’s announced result, but never changed. In [19], sufficient
properties for proving strong verifiability have been established.

A downside of the above definitions is that the voter’s intent is not captured by the
oracle Ovote(id,c), as this oracle simply performs the honest voting algorithm. In reality,
voters typically use some VSD, which might be corrupted. Additionally, since Cortier
et al. require that the adversary wins the game (i.e., successfully cheats) with at most
negligible probability, ballot audit checks, such as Benaloh’s audits9 [11], are deemed
non-verifiable as these checks may fail with non-negligible probability. Another weak
point, although less important than the previous ones, is that this framework assumes
that the result function ρ admits partial tallying, which is commonly the case, but it is,
for example, not applicable to voting protocols which use the majority function as the
result function.

7.8 Casting in the KTV Framework

Protocol PCGGI . The set of agents Σ consists of the voters, the bulletin board B, the
registrar Reg, the teller T, judge J, the scheduler, and the remaining participants. As
usually, we assume that the judge and the scheduler cannot be corrupted (they ignore
the corrupt message). As in the definition of Cortier et al., Reg and B can be corrupted
statically, i.e., they accept the corrupt message at the beginning of a run only. Voters can
be corrupted dynamically.

When the voter V runs her honest program πV, she expects a candidate c, a credential
pair upk,usk as input (if the input is empty, she stops). After that, she reads the election
parameters prmpub and C from the bulletin board B (if she cannot find any election
paramaters on B, she stops). Then, she runs Vote(prmpub,c,upk,usk) and sends the
result b to the bulletin board B. Once the election is closed, she reads the content of the
bulletin board and checks whether her ballot has been properly handled by the ballot
box by running VerifyVote(τ ,upk,usk,b). If not, the voters send her complaint to the
judge. The program of the judge accepts a run, if it does not receive any complaint from
a voter and the procedure Verify(τ ,Result,P) returns 1.

When the registrar Reg runs the honest program πR, it generates and distributes
secret credentials to voters and registers the corresponding public credentials in the
bulletin board.

When the teller T runs its honest program πT, it reads the public transcript τ and
runs (Result,P)←Tally(τ ,sk), with the election private key sk. The transcript is updated
to τ ′ = τ ||Result||P.
Strong verifiability. We define the goal γSV to be the set of all runs of PCGGI in which
either (a) both Reg and B are corrupted, (b) the result is not output, or (c) the result r of

9 In these audits the voter can decide to cast or to audit a ballot created by her VSD. If she decides
to audit the ballot, she can check whether it actually encodes her choice.
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the election is defined and satisfies:

r = ρ
(
{cE

i }
nE
i=1

)
?R ρ

(
{cA

i }
nA
i=1

)
?R ρ

(
{cB

i }
nB
i=1

)
for some nE ,nA,nB and some cE

i ,c
A
i ,c

B
i such that

– cE
1 , . . . ,c

E
nE

are the choices read by honest voters that successfully checked their
ballots at the end of the election (and report it to the judge).

– w1, . . . ,wmA are the candidates read by honest voters that did not check their ballots
and {cA

i }
nA
i=1 ⊆ {w j}mA

j=1;
– cB

1 , . . . ,c
B
nb
∈ C and nb is smaller then the number of voters running a dishonest

program.

Note that, according to the above definition, if both the registrar and the bulletin board
are corrupted, then the goal is trivially achieved, as we do not expect to provide any
guarantees in this case.

For the protocol PCGGI , strong verifiability by Cortier et al. can essentially be charac-
terized by the fact that it is (γSV , δ)-verifiable by the judge J in the sense of Definition 1,
for δ = 0.

Let us emphasize that this goal ensures that votes of honest voters who do not verify
at the end of the election are at most dropped, but not changed. This is in contrast to the
goals we have seen so far. In these goals, votes of honest voters who do not verify might
have been tampered with.
Weak verifiability. We define the goal γWV to be the set of all runs of PCGGI in which
either (a) either Reg or B is corrupted, (b) the result is not output, or (c) the result r of
the election is defined and satisfies:

r = ρ
(
{cA

i }
nA
i=1

)
?R ρ

(
{cB

i }
nB
i=1

)
for some nA,nB and some cA

i ,c
B
i such that

– cA
1 , . . . ,c

A
nA

are the candidates read by honest voters that cast their votes;
– cB

1 , . . . ,c
B
nb
∈ C and nb is smaller then the number of voters running a dishonest

program.

For the protocol PCGGI , weak verifiability by Cortier et al. can essentially be charac-
terized by the fact that it is (γWV , δ)-verifiable in the sense of Definition 1.

Note that Item (c) of the goal γWV is stronger than the corresponding item of
γSV (since all honest cast votes shall be counted). However, the latter is called weak
verifiability in [19] because the trust assumptions (Item (a)) are stronger (both the ballot
box and the registrar shall be honest).

8 Computational Election Verifiability by Smyth et al.

This section focuses on the definitions of individual, universal and election verifiability
by Smyth et al. [46]. Smyth et al. consider two different verifiability settings, one for
election schemes with external and the other one for election schemes with internal
authentication (such as Helios and Civitas, respectively). For the sake of brevity, we
focus on election schemes with external authentication because the issues discussed in
Section 8.5 apply to both of them.
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Experiment ExpIV(Π ,A)

(1) (prmpub,c,c
′)←− A

(2) b←− Vote(c,prmpub)

(3) b′←− Vote(c′,prmpub)

(4) if b= b′ and b 6=⊥ and b′ 6=⊥ then

return 1 else return 0

Fig. 5. Individual verifiability experiment by Smyth et al. [46]

8.1 Model

According to Smyth et al., an election scheme Π is a tuple (Setup, Vote, Tally, Verify)
of probabilistic polynomial-time algorithms. The algorithms Setup and Vote are defined
as usual. The algorithm Tally is run by the tellers and receives the content of the
bulletin board B and the parameters prm as input, and outputs the tally along with a
non-interactive proof P for the correctness of the tally. The algorithm Verify describes
the verification of the election result and receives the content of the bulletin board B, the
public parameters prmpub, the tally, denoted by tally, and a proof P, and outputs a bit.
The algorithm Verify is deterministic.

8.2 Individual Verifiability

According to Smyth et al., an election scheme achieves individual verifiability if, for
any two honest voters, the probability that their ballots are equal is negligible, which
formally is expressed as follows.

Definition 7 (Individual verifiability). An election scheme Π = (Setup, Vote, Tally,
Verify) achieves individual verifiability if the success rate Succ(ExpIV(Π ,A)) of any
ppt adversary A in Experiment ExpIV(Π ,A) (Fig. 5) is negligible as a function of `.

8.3 Universal Verifiability

According to Smyth et al., an election scheme achieves universal verifiability if no ppt
adversary A can simulate a tallying phase such that, on the one hand, the verification
algorithm Verify accepts the output (e.g., all zero-knowledge proofs are successful), and,
on the other hand, the given output of the tallying phase does not agree with what Smyth
et al. call the correct tally.

The function correct tally, defined as follows, extracts the actual votes from the
ballots on the bulletin board.

Definition 8 (Correct Tally). The function correct tally maps each tuple (B,prmpub)
to a vector in {0, . . . ,nballots}ncand such that for every choice c ∈ {1, . . . ,ncand} and every
number l ∈ {0, . . . ,nballots} we have that correct tally(B,prmpub)[c] = l if and only if
there are exactly l different ballots b (6=⊥) on the bulletin board B and for each of them
there exists a random bit string r such that b= Vote(c,prmpub;r).
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Experiment ExpUV(Π ,A)

(1) (B,prmpub,tally
′,P′)←− A

(2) tally←− correct tally(B,prmpub)

(3) if tally 6= tally′ and Verify(B,prmpub,tally
′,P′) then

return 1 else return 0

Fig. 6. Universal verifiability experiment by Smyth et al. [46]

Now, universal verifiability is defined as follows according to Smyth et al.

Definition 9 (Universal verifiability). An election scheme (Setup, Vote, Tally, Verify)
achieves universal verifiability if the success rate Succ(ExpUV(Π ,A)) of every ppt
adversary A in Experiment ExpUV(Π ,A) (Fig. 6) is negligible as a function of `.

8.4 Election Verifiability

The notion of verifiability proposed by Smyth et al. now combines the notions of
individual and universal verifiability.

Definition 10 (Election Verifiability). An election scheme (Setup, Vote, Tally, Verify)
satisfies election verifiability if for every ppt adversaries A, there exists a negligible
function µ such that for all security parameters `, we have that

Succ(ExpIV(Π ,A))+Succ(ExpUV(Π ,A))≤ µ(`).

Smyth et al. also consider some soundness properties, including fairness and correctness,
similar to the ones mentioned in previous sections.

8.5 Discussion

This definition has two main shortcomings. First, as stated by the authors, their “defi-
nitions of verifiability have not addressed the issue of voter intent, that is, whether the
ballot constructed by the Vote algorithm corresponds to the candidate choice that a voter
intended to make.” (Page 12, [46]). In general, it is not clear that the combination of the
proposed definitions of verifiability along with additional soundness properties implies
any form of end-to-end verifiability. More precisely, if all the verification procedures
succeed, it is unclear whether the final outcome of an election corresponds to the voters’
choices at least with reasonable probability.10 We think, however, that capturing such
10 It indeed seems that this is not the case due to some technical issues: Their correctness property

requires only that Vote correctly encodes the given choice in the case of the honest setup; it does
not guarantee anything for the dishonest setup which is considered in the verifiability games.
Therefore, if, for instance, Vote always produces ⊥ (an invalid ballot) for some dishonestly
generated public key, the system can still be proved verifiable according to the definition of
Smyth et al., although it clearly produces a wrong election outcome. This particular technicality
seems to be easy to fix, but it nevertheless demonstrates that there is some gap between the
given combination of disconnected properties and an overarching and meaningful verifiability
notion.
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overall correctness and the voter’s intent is at the very core of a meaningful notion of
verifiability.

Second, the definition considers a restricted class of protocols (the authors themselves
provide a list of protocols excluded by their definition), some of these restrictions, as
pointed out before, also apply to some of the other definitions discussed in this paper:
(1) The model captures “single-pass” protocols only: voters send a single ballot to the
election server, without any further interaction. (2) The authors assume that the whole
ballot is published. (3) The authors assume that the vote can be recovered directly from
the ballot, which excludes protocols using information-theoretically hiding commitments.
(4) There is no revote. (5) The bulletin board publishes the list of ballots, as received.
And hence, voting schemes such as ThreeBallot [44] cannot be modeled.

8.6 Casting in the KTV Framework

Protocol PSFC. The set of agents Σ consists of the voters, the bulletin board B, the judge
J, the scheduler, and the remaining participants. Since static corruption is considered, the
agents only accept the corrupt message at the beginning of an election run. The bulletin
board and the judge do not accept to be corrupted.

When a voter V runs her honest program πV, she expects a candidate c as input (if
the input is empty, she stops). After that, she reads the public election parameters prmpub

from the bulletin board B (if she does not receive any election paramaters on B, she
stops). Then, she runs Vote(c,prmpub) and sends the resulting ballot b to the bulletin
board B. Although this is kept implicit in the discussed paper, we will assume here that
V subsequently checks that its ballot is published on B.

When the judge J runs its honest program πJ, it reads the content from the bulletin
board B, including the public paramaters prmpub, the tally Tally, and the proof P (if
the judge does not receive one of these inputs, it outputs ”reject”). Then, the judge
runs Verify and outputs ”accept” or ”reject”, respectively, if Verify(B,prmpub,Tally,P)
evaluates to ”true” or ”false”.

Individual verifiability. We define the goal γIV to be the set of all runs of PSFC in
which all honest voters’ ballots are pairwise different (if 6=⊥), i.e., no clashes occur. For
the protocol PSFC, individual verifiability according to Smyth et al. can essentially be
characterized by the fact that the protocol PSFC is (γIV ,0)-verifiable by the judge J in
the sense of Definition 1.

To see this, observe that if a protocol achieves individual verifiability according to
Definition 7, then we have that for all ppt adversaries πA the probability Pr[π(1`) 7→
¬γIV , (J : accept)]≤ Pr[π(1`) 7→ ¬γIV ] is negligible for π = πP ‖ πA, where the latter
probability is negligible if the protocol satisfies Definition 7.

For the implication in the opposite direction, let us assume that the probability
Pr[π(1`) 7→ ¬γIV , (J : accept)] is negligible for all adversaries. Now, for each adversary
A from the game used in Definition 7, there is a corresponding adversary πA which
always produces correct tally (note that A is not concerned with tallying). For this
adversary we have Pr[π(1`) 7→ ¬γIV , (J : accept)] = Pr[π(1`) 7→ ¬γIV ] which, by the
above assumption, is negligible. This implies individual verifiability (in the sense of
Definition 7).
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Universal verifiability. We define the goal γUV to be the set of all runs of PSFC
in which first prmpub and then a final result (Tally,P) are published and Tally =
correct tally(B,prmpub) (recall that B is the content of the bulletin board that contains
voters’ ballots).

For the protocol PSFC, universal verifiability according to Smyth et al. can essentially
be characterized by the fact that the protocol PSFC is (γUV ,0)-verifiable in the sense of
Definition 1.

To see this, first observe that, for each adversary A, Verify(B,prmpub,Tally
′,P′) in

Experiment ExpUV(Π ,A) (Fig. 6) is true if an honest judge J outputs “accept” (in the
system π with the corresponding adversary), and false otherwise. Second, the adversary A
in Experiment ExpUV(Π ,A) produces a tuple (B,prmpub,Tally

′,P′) for which Tally′ 6=
correct tally(B,prmpub) holds true if and only if we have ¬γUV (in the corresponding
run of π).

Thus, essentially, for a voting protocol P achieving universal verifiability according
to Definition 9 (which means that the success rate in Experiment ExpUV(Π ,A) (Fig. 6)
is negligible for every ppt adversary A) is equivalent to the statement that the goal γUV
is 0-verifiable by the judge J according to Definition 1 (which means that the probability
Pr[π(1`) 7→ ¬γUV , (J : accept)] is negligible in every instance πP ‖ πA).

Election verifiability. According to Smyth et al. the protocol PSFC achieves election
verifiability if it achieves individual and universal verifiability. Therefore this notion can
be expressed in the language of Definition 1 using the goal γIV ∧γUV .

9 Further Related Work

Here we briefly discuss further definitions of verifiability, where for some of the definition
more details are provided in the appendix. Since the focus of this paper is on verifiability
notions that have been formally defined, we excluded those verifiability notions from
our analysis which do not fulfill this requirement ([45,29,50,42,40,41]). An important
paper is the one by Sako and Kilian [45] who were the first to propose the concept of
individual and universal verifiability. This then motivated other researchers to regard
end-to-end verifiability as the sum of certain verifiability subproperties; we discuss this
issue in Section 10.

Kremer et al. [34] (Appendix A) and Cortier et al. [18] (Appendix B) define verifia-
bility in symbolic models, where messages are modeled by terms. Kremer et al. propose
a definition that corresponds to γ0 but under the trust assumption that every voter is
honest and verifies the final result, which is clearly too strong. Cortier et al. [18] devise
formulations for individual verifiability, universal verifiability, and no clash (two honest
ballots should never collude), and they show that these three properties imply what
they call end-2-end verifiability, the latter being close to the goal γSV (introduced in
Section 7), except that ballot stuffing is not prohibited.

The definition by Baum et al. [8] (see Appendix C) can be applied to arbitrary
multi-party computation (MPC) protocols and is based on an ideal functionality in the
Universal Composability (UC) framework. In the context of e-voting protocols, the goal
of this definition is γ0. Baum et al. also consider a very (in fact too) strong fairness
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condition: auditors have to always accept a protocol run if the goal γ0 is achieved,
regardless of whether, for example, zero-knowledge proofs are valid or not.

The definition by Chevallier-Mames et al. [16] (see Appendix D) captures universal
verifiability, and hence, a subproperty of end-to-end verifiability only.

Szepieniec et al. [48] propose a definition of universal verifiability which requires
that, for a given protocol, it should be possible to (efficiently) distinguish between
protocol runs in which either (i) all participants are honest, or (ii) at least one participant
is dishonest. Since this is (typically) impossible, this definition is too strong (see also
Appendix E).

Hosp et al. [27] propose information-theoretic measures for the verifiability of voting
systems, by comparing these systems to perfect voting systems which always output the
correct result, independently of voters being honest or dishonest. This definition is even
much stronger than what is required by γ0, and therefore, does not seem to be applicable
to any practical voting protocol.

10 Summary and Conclusion

In the previous sections, we have studied the formal definitions of verifiability for e-
voting system proposed in the literature. We have presented the original definitions and
cast them in the KTV framework. This casting has demonstrated that the essence of
these notions can be captured within a uniform framework and enabled us to identify
their relative and recurrent merits and weaknesses as well as their specific (partly severe)
limitations and problems.

In Section 10.1, we distill these discussions and insights into detailed requirements
and guidelines that highlight several aspects any verifiability definition should cover.
We also summarize from the previous sections how the different existing definitions
of verifiability from the literature handle these aspects, with a brief overview for some
of the aspects provided in Table 10. Finally, in Section 10.2, as a viable and concrete
embodiment of our guidelines, we instantiate the KTV framework accordingly, obtaining
a solid and ready to use definition of verifiability.

10.1 Guidelines

We now present our requirements and guidelines for the following central aspects, along
with a summary of the previous sections concerning these aspects.
Generality. Many verifiability definitions are designed for protocols with specific
protocol structures and are tailored to them (see Sections 6, 7, 8 and Appendix A, B). As
a result, for new classes of protocols often new definitions are necessary.

Clearly, it is desirable for a verifiability definition to be applicable to as many
protocols as possible. It provides not only reusability, but also comparability: by applying
the same definition to different protocols and protocol classes we can clearly see the
differences in the level and nature of verifiability they provide. A very minimal set of
assumptions on the protocol structure is sufficient to express a meaningful notion of
verifiability, as illustrated by the definition in Section 4 and also by the instantiation of
the KTV framework given below.
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Note, however, that some additional assumptions on the protocol structure allow one
to express some specific properties, such as universal verifiability, which, as discussed in
the previous sections, on their own do not capture end-to-end verifiability, but may be
seen as valuable additions.

Static versus dynamic corruption. We observe that most of the studied verifiability
definitions focus on static corruption, except the definitions in Sections 6 and 7, which
capture the dynamic corruption of voters. In general, modeling dynamic corruption can
yield stronger security guarantees. In the context of verifiability, one could, for example,
provide guarantees not only to honest voters but also to certain corrupted voters. If a
voter is corrupted only late in the election, e.g., when the voting phase, one might still
want to guarantee that her vote is counted. None of the existing definitions provide
this kind of guarantee so far. We briefly discuss how this can be captured in the KTV
framework in Section 10.2.

Binary versus quantitative verifiability. As discussed in Section 3.2, the probability δ
(see Definition 1) that under realistic assumptions some cheating by an adversary remains
undetected may be bigger than 0 even for reasonable protocols: often some kind of partial
and/or probabilistic checking is carried out, with Benaloh audits (see Section 7.7) being
an example. These checks might fail to detect manipulations with some non-negligible
probability. Still, as we have seen when casting the different verifiability notions in the
KTV framework, most of the studied definitions assume the verifiability tolerance to be
δ = 0. This yields a binary notion of verifiability which, as explained, outright rejects
reasonable protocols.

In contrast, the definitions studied in the KTV framework (including Section 4) as
well as the ones in Sections 5 and 6 , allow for measuring the level of verifiability. This
gives more expressiveness and allows one to establish meaningful verifiability results
for (reasonable) protocols which do not provide perfect verifiability.

Goals. As pointed out in Section 4, the goal γ0, which, among others, requires that all
the ballots cast by honest voters are correctly tallied and make it to the final result is very
strong and typically too strong. In order to satisfy this goal very strong trust assumptions
are necessary, for instance, the assumptions taken in the definition of weak verifiability
in Section 7.

From the previous sections, two main and reasonable approaches for defining a goal
emerged, which one could characterize as quantitative and qualitative, respectively:

Quantitative. In Section 4, a family of goals γk, k≥ 0, together with a non-zero tolerance
level δ is considered; a similar approach is taken in Section 6, but see the discussion
in this section. This approach, among others, captures that the probability that more
than k votes of honest voters can be changed without anybody noticing should be
small, i.e., bounded by δ. To be more precise and allow for stronger guarantees,
this approach could be combined with an aspect of the goal defined for strong
verifiability, namely the distinction between votes that are manipulated and those
that are “just” dropped (see Section 7).

Qualitative. In Section 7 (“strong verifiability”), the protocol goal (as cast in the KTV
framework), among others, stipulates that votes of voters who verify their receipt are
contained in the final result. To be general, this approach should also be combined
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with a non-zero tolerance level δ (which, however, was not captured in the original
definition). The reason is that checks (such as Benaloh challenges) might not be
perfect, i.e., manipulation might go undetected with some probability.

In both cases, votes of dishonest voters were restricted to be counted at most once (no
ballot stuffing).

The quantitative approach, on the one hand, provides overall guarantees about the
deviation of the published result from the correct one and measures the probability δ
that the deviation is too big (bigger than k) but nobody notices this. On the other hand, it
does not explicitly require that voters who check their receipts can be sure (up to some
probability) that their votes were counted. But, of course, to prove verifiability of a system
w.r.t. this goal, one has to take into account whether or not voters checked, and more
precisely, the probabilities thereof. These probabilities also capture the uncertainty of
the adversary about whether or not specific voters check, and by this, provides protection
even for voters who do not check.

The qualitative approach explicitly provides guarantees for those honest voters who
verify their receipts. On the one hand, this has the advantage that one does not need to
consider probabilities of voters checking or not, which simplifies the analysis of systems.
On the other hand, such probabilities of course play an important role for measuring the
overall security of a system, an aspect this simpler approach abstracts away. Nevertheless,
it provides a good qualitative assessment of a system.

Interestingly, one could in principle combine both approaches, i.e., consider the
intersection of both goals. While this would give voters also in the quantitative approach
direct guarantees (in addition to the aspect of making a distinction between manipulating
and dropping votes, mentioned above already), it would typically not really change the
analysis and its result: as mentioned, in the quantitative analysis one would anyway have
to analyze and take into account the guarantees offered when checking receipts.

Below, we provide concrete instantiations for both approaches in the KTV frame-
work.
Ballot stuffing. Not all definitions of verifiabiltiy rule out ballot stuffing, even though
ballot stuffing, if unnoticed, can dramatically change the election result. Some definitions
go even further and abstract away from this problem by assuming that there are only
honest voters (see trust assumptions below).

Clearly, allowing undetected ballot stuffing makes a verifiability definition too weak.
We recommend that a verifiability definition should exclude undetected ballot stuffing. It
might also be useful to capture different levels of ballot stuffing in order to distinguish
systems where it is very risky to add even a small number of ballots from those where
adding such a small number is relatively safe. The goals discussed above, as mentioned,
both require that no ballot stuffing is possible at all.
Trust assumptions. Some verifiability definitions assume some protocol participants
to be always honest, for example the bulletin board (Sections 5, 6, 8, Appendix A, B),
or all voters (Appendix A) or all voter supporting devices (Sections 8, 7), or some
disjunctions of participants (Section 7); the definition discussed in Section 4 does
not make such assumptions. We think that verifiability definitions which rely on the
unrealistic assumption that all voters are honest are too weak. The other trust assumptions
might be reasonable depending on the threat scenario. A general verifiability definition

30



should be capable of expressing different trust assumptions and make them explicit;
embedding trust assumptions into a definition not only makes the definition less general,
but also makes the assumptions more implicit, and hence, easy to overlook.

Individual and universal verifiability. In Section 8 and Appendix B, definitions of
individual and universal verifiability were presented. We already pointed out that the split-
up of end-to-end verifiability into sub-properties is problematic. In fact, Küsters et al. [38]
have proven that, in general, individual and universal verifiability (even assuming that
only eligible voters vote) do not imply end-to-end verifiability, e.g. for ThreeBallot [44].
For the definitions of individual and universal verifiability presented in Section 7, it was
shown in [18] that they imply end-to-end verifiability under the assumption that there
are no clashes [38]. However, the notion of end-to-end verifiability considered there is
too weak since it allows ballot stuffing. For the definitions of individual and universal
verifiability in Section 8 no such proof was provided, and therefore, it remains unclear
whether it implies end-to-end verifiability. (In fact, technically these definitions, without
some fixes applied, do not provide end-to-end verifiability as pointed out in Section 8.)

The (combination of) notions of individual and universal verifiability (and other
properties and subproperties, such as eligibility verifiability, cast-as-intended, recorded-
as-cast, and counted-as-recorded) should not be used as a replacement for end-to-end
verifiability per se since they capture only specific aspects rather than the full picture.
Unless formally proven that their combination in fact implies end-to-end verifiability
they might miss important aspects, as discussed above. Therefore, the security analysis
of e-voting systems should be based on the notion of end-to-end verifiability (as, for
example, concretely defined below). Subproperties could then possibly be used as useful
proof techniques.

10.2 Exemplified Instantiation of the Guideline

We now demonstrate how the guidelines given above can be put into practice, using, as
an example, the KTV framework. By this, we obtain a solid, ready-to-use definition of
verifiability. More specifically, we propose two variants, one for qualitative and one for
quantitative reasoning, as explained next.

The distillation of our observations given in Section 10.1 reviews different aspects
of verifiability and, in most cases, it clearly identifies the best and favorable ways they
should be handled by verifiability definitions. When it comes to the distinction between
qualitative and quantitative approaches to define verifiability goals, we have, however,
found out that both approaches have merits and both can yield viable definitions of
verifiability. This is why we propose two instantiations of the KTV framework, one
following the qualitative approach and one for the quantitative approach.

To instantiate the KTV framework, one only has to provide a definition of a goal (a
family of goals) that a protocol is supposed to guarantee. Note that, as for the second
parameter of Definition 1, δ, one should always try, for a given goal, to establish an
as small δ as possible. In other words, the value of δ is the result of the analysis of a
concrete system, rather than something fixed up front.

In the following, we define two goals corresponding to the two variants of verifia-
bility discussed above: goal γql(ϕ) for the qualitative variant and goal γqn(k,ϕ) for the
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quantitative one. We explain the meaning of the parameters below. Here we only remark
that the common parameter ϕ describes the trust assumptions (i.e., it determines which
parties are assumed to be honest and which can be corrupted and when) under which the
protocol is supposed to provide specific guarantees. Recall that, in the KTV framework,
the adversary sends a special message corrupt to a participant in order to corrupt it (a
participant can then accept or reject such a message). This allows for modeling various
forms of static and dynamic corruption. Note also that it is easily visible, given a run, if
and when a party is corrupted.

In the following, for a given run r of an e-voting protocol with n eligible voters, we
denote by nh the number of honest and by nd the number of dishonest voters in r. Recall
that we say a party is honest in a run r if it has not received a corrupt message or at least
has not accepted such a message throughout the whole run. We denote by c1, . . . ,cnh
the actual choices of the honest voters in this run (which might include abstention), as
defined in Section 4.1.

Qualitative goal. The goal γql(ϕ) we define here corresponds to the strong verifiability
goal γSV from Section 7. In contrast to γSV , γql(ϕ) has the parameter ϕ for the trust
assumptions, which were fixed in γSV . Informally, this goal requires that, if the trust
assumption ϕ holds true in a protocol run, then (i) the choices of all honest voters who
successfully performed their checks are included in the final result, (ii) votes of those
honest voters who did not performed their check may be dropped, but not altered, and
(iii) there is only at most one ballot cast for every dishonest voter (no ballot stuffing). If
the trust assumptions ϕ are not met in a protocol run, we do not expect the protocol to
provide any guarantees in this run. For example, if in a setting with two bulletin boards,
ϕ says that at least one of the bulletin boards should be honest in a run, but in the run
considered both have been corrupted by the adversary, then no guarantees need to be
provided in this run.

Formally, the goal γql(ϕ) is satisfied in r (i.e., r ∈ γql(ϕ)) if either (a) the trust
assumption ϕ does not hold true in r, or if (b) ϕ holds true in r and there exist valid
choices c̃1, . . . , c̃n for which the following conditions are satisfied:

(i) An election result is published in r and it is equal to ρ(c̃1, . . . , c̃n).
(ii) The multiset {c̃1, . . . , c̃n} consists of all the actual choices of honest voters who

successfully performed their check, plus a subset of actual choices of honest voters
who did not perform their check (successfully), and plus at most nd additional
choices.

If the checks performed by voters do not fully guarantee that their votes are actually
counted, because, for example, Benaloh checks were performed (and hence, some
probabilistic checking), then along with this goal one will obtain a δ > 0, as there
is some probability for cheating going undetected. Also, the requirement that votes
of honest voters who do not checked can at most be dropped, but not altered, might
only be achievable under certain trust assumptions. If one wants to make weaker trust
assumptions, one would have to weaken γql(ϕ) accordingly.

Quantitative goal. The goal γqn(k,ϕ) of the quantitative verifiability definition is a
refinement of the goal γk from Section 4 (note that now, ϕ can specify trust assumption
with dynamic corruption). Similarly to Section 6, we use a distance function on election
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results. Roughly, the goal γqn(k,ϕ) requires that the distance between the produced result
and the “ideal” one (obtained when the actual choices of honest voters are counted and
one choice for every dishonest voter) is bounded by k, where, for γqn(k,ϕ), we consider
a specific distance function d. In order to define d, we first define a function fcount : Cl→
NC which, for a vector (c1, . . . ,cl) ∈ Cl (representing a multiset of voters’ choices),
counts how many times each choice occurs in this vector. For example, fcount(B,C,C)
asigns 1 to B, 2 to C, and 0 to all the remaining choices. Now, for two vectors of choices
c,c′ the distance function d is defined by

d(c,c′) = ∑
c∈C
| fcount(c)[c]− fcount(c′)[c]|.

For instance, d((B,C,C),(A,C,C,C)) = 3.
Now, the goal γqn(k,ϕ) is satisfied in r if either (a) the trust assumption ϕ does

not hold true in r, or if (b) ϕ holds true in r and there exist valid choices c′1, . . . ,c
′
nd

(representing possible choices of dishonest voters) and c̃1, . . . , c̃n, such that:

(i) an election result is published and it is equal to ρ(c̃1, . . . , c̃n), and
(ii) d((c1, . . . ,cnh ,c

′
1, . . . ,c

′
nd
),(c̃1, . . . , c̃n))≤ k.

Note that when an adversary drops one honest vote, this increases the distance in
Condition (ii) by one, but when he replaces an honest voter’s choice by another one, this
increases the distance by two. This corresponds to the real effect of a manipulation on
the final result (goal γk does not distinguish between these two types of manipulations).

As already explained, since not all voters will check their receipts, some manipulation
will go undetected. And hence, for this goal δ = 0 is typically not achievable. The
security analysis carried out on a concrete protocol will have to determine the optimal
(i.e., minimal) δ, given the parameter k.

We finally note that both of the above goals could be refined by providing guarantees
for those voters who have been corrupted sufficiently late in the protocol. For this, one
merely has to change what it means for a voter to be honest: voters corrupted late enough
would still be considered honest for the purpose of the above goal definitions. For such
voters, one would then also provide guarantees. However, such refinements are protocol
dependent, whereas the above goals are applicable to a wide range of protocols.
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A Symbolic Verifiability by Kremer et al.

In this section, we focus on the verifiability definition by Kremer et al. [34] who divide
verifiability into three sub-properties.

– Individual verifiability: a voter should be able to check that his vote belongs to the
ballot box.

– Universal verifiability: anyone should be able to check that the result corresponds to
the content of the ballot box.

– Eligibility verifiability: only eligible voter may vote.

Since the proposed formal definition for eligibility verifiability is rather long and techni-
cal, we focus here on individual and universal verifiability.

A.1 Model

In symbolic models, messages are represented by terms. Kremer et al. model protocols
as processes in the applied-pi calculus [5]. A voting specification is a pair (V,A) where
V is a process that represents the program of a voter while A is an evaluation context
that represents the (honest) authorities and the infrastructure. All voters are (implicitly)
assumed to be honest.
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A.2 Individual and Universal Verifiability

We can express the definitions of Kremer et al. independently of the execution model,
which slightly extends their definitions.

The symbolic verifiability definition by Kremer et al. [34] assumes that each voter
Vi performs an individual test ϕIV

i , and that observers perform a universal test ϕUV .
The individual test ϕIV

i takes as input the voter’s vote and all his local knowledge (e.g.
randomness, credentials, and public election data) as well as a partial view of the ballot
box (which should correspond to his ballot). The universal test ϕUV takes as input the
outcome of the election, the public election data, the ballot box, and possibly some extra
data generated during the protocol used for the purposes of verification. These tests
should satisfy the following conditions for any execution.

Definition 11 (Individual and Universal Verifiability). A voting specification (V,A)
satisfies individual and universal verifiability if for all n ∈ N,

∀i, j : ϕIV
i (b)∧ϕIV

j (b)⇒ i = j (1)

ϕUV(B,r)∧ϕUV(B,r′)⇒ r ≈ r′ (2)∧
1≤i≤n

ϕIV
i (bi)∧ϕUV(B,r)⇒ c≈ r (3)

where c = (c1, . . . ,cn) are the choices of the voters, b is an arbitrary ballot, B is the
(content of the) bulletin board, r and r′ are possible outcomes, and ≈ denotes equality
up to permutation.

Intuitively, Condition (1) ensures that two distinct voters may not agree on the same
ballot, i.e., no clash occurs. Condition (2) guarantees the unicity of the outcome: if
the observers successfully check the execution, there is at most one outcome they may
accept (up to permutation). Finally, Condition (3) is the key property: if all tests succeed,
the outcome should correspond to the voters’ intent. Observe that, since all voters are
assumed to be honest, the implication c ≈ r in Condition (3) can be described by the
goal γ0 (see below).

A.3 Discussion

Definition (11) is tailored to a specific tally: the outcome of the election has to be the
sequence of the votes. Moreover, the definition assumes that the ballot of the voter can
be retrieved from the ballot box, which does not apply to ThreeBallot for example. The
main restriction is that all voters are assumed to be honest.

Observe that by Condition (3) the goal γ0 is guaranteed only for protocol runs in
which all voters successfully verify their ballots (and the universal test is positive). For
the other runs, the outcome can be arbitrary. However, the assumption that all honest
voters verify their ballot is unrealistically strong. Therefore, even though this definition
uses the strong goal γ0, this assumption makes the definition weak.
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A.4 Casting in the KTV Framework

Protocol PKRS. The set of agents Σ consists of the voters, the bulletin board B, the judge
J, and the remaining participants. Only static corruption is considered. The voters, the
bulletin board and the judge do not accept to be corrupted. The honest programs are
defined as follows:

– When a voter Vi runs her honest program πVi and is triggered in order to cast a ballot,
she runs the usual program. When Vi is triggered in order to verify her vote, she
performs the individual test ϕIV

i (b) with her ballot b, and if this evaluates to ”true”,
she outputs ”accept”, otherwise ”reject”.

– When the judge J runs its honest program πJ, it reads the content from the bulletin
board B including the result r (if it does not receive any content, it outputs ”reject”).
Then the judge performs the universal test ϕUV(B,r), and if this evaluates to ”false”,
the judge outputs ”reject”. Otherwise, the judge iteratively triggers each voter Vi in
order to verify her ballot. If every voter outputs ”accept”, the judge outputs ”accept”,
and otherwise ”false”. (This models the requirement in the definition of Kremer et
al. that all voters have to verify successfully in order for the run to be accepted. It also
means that if not all voters verify, no guarantees are given.)

End-to-end honest verifiability. Let the goal γIUV be the sub-goal of γ0 in which all
voters produce pairwise different ballots. Then, individual and universal verifiability
by Kremer et al. (Definition (11)) can essentially be characterized by the fact that the
protocol PKRS is (γIUV ,0)-verifiable by the judge J.

To see this, first observe that the judge J as defined above outputs ”accept” if and
only if the Condition

∧
1≤i≤nϕ

IV
i (bi)∧ϕUV(B,r) in Condition (3) evaluates to true. As

we already pointed out, the implication c ≈ r in Condition (3) describes the goal γ0.
Condition (1) stating that there are no clashes between the ballots of honest voters is
also satisfied in γIUV by definition. Thus, for a protocol which achieves individual and
universal verifiability according to Definition 11, the probability that the judge J in
PKRS accepts a protocol run in which γIUV is not fulfilled, is negligible (δ = 0), i.e.,
we have Pr[π(`) 7→ ¬γIUV , (J : accept)] ≤ δ = 0 with overwhelming probability as in
Definition 1.

B Symbolic Verifiability by Cortier et al.

In this section, we study the symbolic verifiability definition by Cortier et al. [18]. Cortier
et al. also define different notions of verifiability: individual, universal, and end-to-end
verifiability. They prove that under the assumption of an additional property, called
”no clash”, individual and universal verifiability imply end-to-end verifiability in their
symbolic model.

B.1 Model

As in [34], the definitions of Cortier et al. are cast in a symbolic model. That is, messages
are represented by terms and protocols are defined as symbolic processes. Additionally,
Cortier et al. assume that voters reach several successive states denoted as follows:
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– Vote(i,c,cred): the voter with identity i owns some credential cred and is willing to
cast a choice c.

– MyBallot(i,c,b): the voter i has prepared a ballot b corresponding to the choice c.
– VHappy(i,c,cred,B): the voter i with credential cred has cast a choice c and is

happy with the content of the ballot box B.

Cortier et al. [18] also assume a judge that checks whether a result r corresponds to a
ballot box B and reaches a state JHappy(B,r) whenever this is the case.

After the casting and before the tallying, some ballots may be removed because
they are invalid (e.g., due to flawed signatures or zero-knowledge proofs) or simply
because some voters have voted several times and only the last vote counts. This yields a
“sanitized” list of ballots Bsan.

B.2 Individual Verifiability

Intuitively, individual verifiability by Cortier et al. holds true if whenever honest voters
perform the checks prescribed by the protocol, then their ballots belong to the ballot box.

Definition 12 (Individual Verifiability). A protocol guarantees individual verifiability
if for every execution, and for every voter Vi, choice c, credentials cred and ballot box
B, whenever the state VHappy(i,c,cred,B) is reached, it follows that

Vote(i,c,cred)∧∃b ∈ B : MyBallot(i,c,b).

B.3 Universal Verifiability

The universal verifiability definition by Cortier et al. depends on certain predicates whose
purpose is to formally define what it means that a ballot ”contains” a vote and that the
tallying proceeds correctly.
Wrap. To define that a vote is “contained” in a ballot, Cortier et al. introduce a predicate
Wrap(c,b) that is left undefined, but has to satisfy the following properties:

(i) Any well-formed ballot b corresponding to some choice c satisfies the Wrap
predicate:

MyBallot(i,c,b)⇒Wrap(c,b)

(ii) A ballot b cannot wrap two distinct choices c1 and c2:

Wrap(c1,b)∧Wrap(c2,b)⇒ c1 = c2

For a given protocol, the definition of Wrap typically follows from the protocol specifi-
cation.
Good sanitization. When the ballot box B is sanitized, it is acceptable to remove some
ballots but of course true honest ballots should not be removed. Therefore, Cortier et
al. define the predicate GoodSan(B,Bsan) to hold true (implicitly relatively to a run) if
the honest ballots of B are not removed from Bsan. This means that (i) Bsan ⊆ B, and (ii)
for any b ∈ B such that MyBallot(i,c,b) holds true for some voter Vi and some choice c,
it is guaranteed that b ∈ Bsan.
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Good counting. Cortier et al. define a predicate GoodCount(Bsan,r) in order to describe
that the final result r corresponds to counting the votes of Bsan. This is technically defined
in [18] by introducing an auxiliary bulletin board B′san which is a permutation of Bsan

and from which the list rlist of votes (such that r = ρ(rlist) where ρ is the counting
function) can be extracted line by line from B′san. More formally, GoodCount(Bsan,r)
holds true if there exist B′san,rlist such that (i) Bsan and rlist have the same size, and
(ii) Bsan and B′san are equal as multisets, and (iii) r = ρ(rlist), and (iv) for all ballots b
with B′san[ j] = b for some index j, there exists a choice c such that Wrap(c,b) as well
as rlist[ j] = c hold true. Note that the definition of GoodCount is parameterized by the
counting function ρ of the protocol under consideration.

Then, universal verifiability is defined as follows.

Definition 13 (Universal Verifiability). A protocol guarantees universal verifiability if
for every execution, and every ballot box B and result r, whenever the state JHappy(B,r)
is reached, it holds that

∃Bsan : GoodSan(B,Bsan)∧GoodCount(Bsan,r).

Intuitively, whenever the judge (some election authority) states that some result r
corresponds to a ballot box B, then r corresponds to the votes contained in a subset Bsan

of B (some ballots may have been discarded because they were ill-formed for example)
and this subset Bsan contains at least all ballots formed by honest voters that played the
entire protocol (that is, including the final checks).

B.4 E2E Verifiability

Intuitively, end-2-end verifiability according to Cortier et al. holds if, whenever no
one complains (including the judge), then the election result includes all the votes
corresponding to honest voters that performed the checks prescribed by the protocol.

Definition 14 (E2E Verifiability). A protocol guarantees end-2-end verifiability if for
every execution, and every ballot box B and result r, whenever a state is reached such
that for some subset of the honest voters (indexed by some set I) with choices ci and
credentials credi (i ∈ I) we have

JHappy(B,r)∧
∧
i∈I

VHappy(i,ci,credi,B),

then there exist rlist such that we have r = ρ(rlist) and {ci}i∈I ⊆ rlist (as multisets).

B.5 No Clash

Finally, Cortier et al. define the notion of “no clash” as follows. Intuitively, ”no clash”
describes the property that two distinct honest voters may not build the same ballot.

Definition 15 (No Clash). A protocol guarantees no clash if for every execution, when-
ever a state is reached such that MyBallot(i,ci,b)∧MyBallot( j,c j,b), then it must be
the case that i = j and ci = c j.
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B.6 Discussion

Cortier et al. [18] showed that individual verifiability, universal verifiability, and the ”no
clash” property together imply End-to-End verifiability (all as defined above).

In order to be able to define their notions of individual and universal verifiability,
Cortier et al. proposed a model in which it is possible to (i) extract single ballots from
the bulletin board (implicit in the predicate VHappy), and to (ii) uniquely determine
the content, i.e. the plain vote, of each single ballot (Wrap predicate). Therefore, these
definitions can only be applied to a class of protocols which fulfill these requirements,
and by this, for example, ThreeBallot [44] as well as protocols in which ballots are
information theoretically secure commitments (e.g. [23]) can not be analyzed.

The notion of end-2-end verifiability (Definition 14) is rather weak since it only
requires that honest votes are counted (for voters that checked). It does not control dishon-
est votes. In particular, this notion does not prevent ballot stuffing. The authors of [18]
introduced this notion because the Helios protocol does not satisfy strong verifiability
as defined in [19] for example. Moreover, the verification technique based on typing
developed in [18] would probably require some adaption to cover strong verifiability as
it would need to count the number of votes, which is a difficult task for type-checkers.

B.7 Casting in the KTV Framework

Protocol PCEKMW . The set of agents Σ consists of the honest voters, the bulletin board
B, the judge J, and the remaining participants. Only static corruption is considered. The
bulletin board and the judge do not accept to be corrupted. The honest programs are
defined as follows:

– When a voter V runs her honest program πV, and is triggered to cast her ballot, she
expects an identity i and a choice c (if not, she stops). Then, she runs Vote(c) to build
her ballot b and to submit it to the bulletin board. Afterwards, she reaches a state
MyBallot(i,c,b). When the voter is triggered to verify her vote, she reads the content
of the bulletin board B and reaches a state VHappy(i,c,B) if her checks evaluate to
true.

– When the judge J runs its honest program πJ and is triggered to verify the election
run, it reads the content of the bulletin board B including the final result r (if not
possible, J outputs ”reject”). If the judge successfully performs some checks (which
depend on the concrete voting protocol), then he outputs ”accept” and reaches a state
JHappy(B,r).

Individual verifiability. We define the goal γIV to be the set of all runs of PCEKMW in
which whenever an honest voter Vi reaches the state VHappy(i,c,B) for some choice c
and ballot b, then there exists a ballot b ∈ B such that this voter started with (i,c) as her
input and reached MyBallot(i,c,b) as intermediary state. Then, individual verifiability
by Cortier et al. (Definition 12) can essentially be characterized by the fact that the
protocol PCEKMW is (γIV ,0)-verifiable by the judge J.
Universal verifiability. We define the goal γUV to be the set of all runs of PCEKMW
in which whenever a result r is obtained and the final content of the ballot box is B
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then there exists Bsan such that GoodSan(B,Bsan) and GoodCount(Bsan,r) hold true
(as defined above). Then, universal verifiability by Cortier et al. (Definition 13) can
essentially be characterized by the fact that the protocol PCEKMW is (γUV ,0)-verifiable
by the judge J.
End-to-end verifiability. We define the goal γE2E to be the set of all runs of PCEKMW
in which the result r of the election satisfies r = ρ(rlist) for some rlist that con-
tains (as multiset) all the choices ci for which some honest voter Vi reached a state
VHappy(i,ci,crediB). Then, end-to-end verifiability by Cortier et al. (Definition 14) can
essentially be characterized by the fact that the protocol PCEKMW is (γE2E ,0)-verifiable
by the judge J.

C Publicly Auditable Secure Multi-Party Computation by Baum
et al.

This section focusses on the definition of publicly auditable secure multi-party computa-
tion by Baum et al. [8]. Baum et al. also present a game-based definition of auditable
correctness which is, however, underspecified.11 Therefore, we only analyze the defini-
tion of auditable correctness as implied by the ideal functionality.

C.1 Model

The protocols are client-server MPC protocols in the Universal Composability Frame-
work, where a set of parties provide input to the actual working parties, who run the MPC
protocol among themselves and make the output public. The input parties are denoted
by V1, . . . ,Vn and their inputs are denoted by (c1, . . . ,cn). The computing parties are
denoted by T1, . . . ,Tm and participate in the computation phase. Given a set of inputs
c1, . . . ,cn, they compute an output C(c1, . . . ,cn) for some circuit C over a finite field.
After the protocol is executed, anyone acting as the judge J can retrieve the transcript
τ of the protocol from the bulletin board and (using only the circuit C and the output
Tally) determine whether the result is valid or not.

C.2 Auditable Correctness

Definition 16. A client-server MPC protocol achieves auditable correctness if it realizes
the ideal functionality FAuditMPC (Fig. 8) in the UC framework.12

In what follows, we describe the basic concept of the ideal functionality FAuditMPC
(Fig. 8). In the initializing phase, the adversary can determine which input parties and

11 More precisely, in the game-based definition it is not stated by whom the input x1, . . . ,xm is
provided.

12 In the ideal functionality FAuditMPC as defined in the original work [8], the variables c′1, . . . ,c
′
m

that are used in the second step of the computing phase are not defined. It is reasonable to
assume that these variables denote the inputs c or c′, respectively, which are associated to the
input parties V1, . . . ,Vn and stored in the first step of the input phase. Therefore, we added the
third line of the input phase above to the ideal functionality from the original paper.
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Functionality FAuditMPC

Initialize: On input (Init,C) from all parties (where C is a cir-
cuit with n inputs and one output): Wait until A sends the
sets ABV ⊆ {1, . . . ,n} (corrupted input parties) and ABT ⊆
{1, . . . ,m} (corrupted computing parties).
Input: On input (Input,Vi,varidc,c) from Vi and on input
(Input,Vi,varidc,?) from all parties Tk, with varidc a fresh
identifier:

1. If i ∈ ABV , then store (varidc,c). Else let A choose c′ and
store (varidc,c′).

2. If |ABT |= m, send (Input,Vi,varid,c) to all Tk.
3. For all i ∈ {1, . . . ,n} let V′i denote the input stored for Vi.

Compute: On input (Compute) from all parties Tk:
1. If an input gate of C has no value assigned, stop here.
2. Compute Tally′ =C(c′1, . . . ,c

′
m).

3. If |ABT |= 0, set Tally=Tally′. If |ABT |> 0, output Tally′

to A and wait for Tally from A. If |ABT |< n, the function-
ality accepts only Tally ∈ {⊥,Tally′}. If |ABT | = n, any
value Tally is accepted.

Audit: On input (Audit,y) from J, and if Compute was exe-
cuted, the functionality does the following:
• If Tally′ = Tally = y, then output ”accept y”.
• If Tally =⊥, then output ”no audit possible”.
• If Tally′ 6= Tally or y 6= Tally, then output ”reject y”.

Fig. 8. Ideal functionality FAuditMPC by Baum et al. describing the online phase.

which computing parties are corrupted. In the input phase, each honest input party V
provides the ideal functionality with input c, and for each corrupted input party V, the
adversary can provide the ideal functionality with an arbitrary input c′ which is then
considered as the input of V. The inputs for honest and dishonest input parties are stored
as c′1, . . . ,c

′
n. In a voting protocol, c′1, . . . ,c

′
n denote the choices of the honest voters plus

possible choices of the dishonest voters being provided by the adversary (at most one vote
for each dishonest voter). In the compute phase, the ideal functionality first computes
the correct tally Tally′ = C(c′1, . . . ,c

′
n). If no computing party is corrupted, we take

Tally = Tally′. Otherwise (if at least one computing party is corrupted), the adversary is
given Tally′ and can determine the output Tally with the following restriction: if not all
computing parties are corrupted, the adversary can output ⊥ or Tally′, and otherwise, he
can choose an arbitrary result. In a voting protocol, Tally′ denotes the correct output of
the voting protocol run with input c′1, . . . ,c

′
n, while Tally denotes the actual output of the

run. In the audit phase the ideal functionality checks whether the output Tally coincides
with the correct result Tally′. For a voting protocol, the property that Tally′ and Tally
coincide is simply the goal γ0 as introduced in Definition 2.
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C.3 Discussion

The auditor of an MPC protocol which realizes the ideal functionality FAuditMPC in
the UC framework always has to accept the result Tally of a run (with overwhelming
probability) if the result is correct, regardless of the rest of the run (see the first case of the
audit part in the ideal functionality). However, this fairness requirement is unrealistically
strong since then, as long as the result of a protocol run is correct, the auditor has to
accept the result even if, for example, ZK proofs are flawed.

If an attacker does not control all computing parties, i.e., if that there is at least
one honest computing party, then an MPC protocol that realizes the ideal functionality
guarantees that either the result is correct, or else not output is produced. This assumption
is, however, unrealistically strong.

C.4 Casting in the KTV Framework

Protocol PBDO. The set of agents Σ consists of the voters, the bulletin board B, the
judge J, and the remaining participants. Since static corruption is considered, the agents
only accept to be corrupted at the beginning of an election run. The bulletin board B and
the judge J don’t accept to be corrupted.

When a voter Vi runs her honest program πVi , she receives a choice ci and then runs
Vote(ci) (see Section 2).

The honest program of the judge J depends on the concrete voting protocol.

Public auditability. Let the goal γ0 be defined as in Definition 2 by Küsters et al.13.
Public auditability of a protocol PBDO (as implied by the ideal functionality FAuditMPC )
can essentially be characterized by the fact that (i) the protocol PBDO is (γ0,0)-verifiable
by the judge J (Definition 1), and (ii) the output of the protocol is either the correct one
or ⊥ if at least one computing party is honest. To see this, note that in its audit phase,
the ideal functionality FAuditMPC accepts the run if and only if the published result Tally
is equal to the correct result Tally′, i.e., γ0 is achieved.

Additionally, as already mentioned, public auditability entails the fairness condition
that requires a run to be accepted whenever the produced result is correct (as mentioned,
this condition is too strong in the context of e-voting).

D Universal Verifiability by Chevallier-Mames et al.

In this section, we analyze the definition of universal verifiability by Chevallier-Mames
et al. [16].

13 Since Definition 16 does not distinguish between valid and invalid choices c (see Discus-
sion C.3), we assume that the set of valid choices is the finite field over which the circuit C is
defined.
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D.1 Model

For each voter Vi, Bi denotes the transcript of Vi, i.e., the interactions between Vi and
the voting authority. The bulletin board B is regarded as the set of transcripts. Any
interaction, including those with the authorities, can be assumed public.

1. Detection of individual fraud: From a partial list of transcripts B produced by
V1, . . . ,Vn, the voting authority should be able to determine whether a new transcript
Bn+1 produced by Vn+1 is valid (well-formed and does not correspond to a double vote).
More formally, there exists a boolean function f that can determine this fact,

∀n,∀V1, . . . ,Vn,Vn+1

∀B← V1, . . . ,Vn,Bn+1← Vn+1,

f (B,Bn+1) = Bn+1 valid ∧

{
0, if Vn+1 ∈ {V1, . . . ,Vn}
1, if Vn+1 /∈ {V1, . . . ,Vn}

The language of the bulletin boards B which are iteratively valid is denoted by L .
2. Computation of the tally: From the transcripts, the voting authority should be able

to compute the tally, that is a vector of the number of selections for each candidate: there
exists an efficient function f ′ that, from the bulletin board B, outputs Tally,

∀B ∈L , f ′(B) = ∑
i
ci = Tally.

3. Computation of the list of the voters: From the transcripts, the voting authority
should be able to determine the list Vcast of the voters who actually casted their ballots:
there exists an efficient function f ′′ that, from the bulletin board B, extracts the sublist
Vcast of the voters,

∀B ∈L , f ′′(B) = Vcast.

D.2 Universal Verifiability

The idea of universal verifiability by Chevallier-Mames et al. is that everybody should
be able to check the correctness/validity of the votes and of the computation of the tally
and the voters: the bulletin-board B, the tally Tally and the list of the voters Vcast should
rely in an NP language L ′, defined by the relation R: there exists a witness w which
allows an efficient verification. Furthermore, for any B, the valid Tally and Vcast should
be unique.

Definition 17 (Universal Verifiability). Let R be the NP-relation for the language L ′

of the valid ballots and valid computation of the tally. A voting scheme achieves the
universal verification property if only one value for the tally and the list of the voters
can be accepted by the relation R, and the witness w can be easily computed from the
bulletin-board B using a function g:

∀B ∈L ,∃!(Tally,Vcast),∃w : R(B,Tally,Vcast,w) = 1
∀B /∈L ,∀(Tally,Vcast,w) : R(B,Tally,Vcast,w) = 0

∀B ∈L : R(B, f ′(B), f ′′(B),g(B)) = 1.
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Note that g is a function private to the authorities, to compute a short string (the
witness) that allows everybody to check the overall validity, granted the public relation
R. The functions f , f ′, f ′′ and g may be keyed according to the system parameters: g is
clearly private to the voting authority, while f and f ′′ may be public (which is the case
in schemes based on homomorphic encryption). The function f ′ is likely to be private.

D.3 Discussion

The second requirement for voting schemes according to Chevallier-Mames et al. (com-
putation of the tally) excludes dishonest voters since for them ci remains undefined as
they might not even produce ci; and even if a dishonest voter produces some ci as an
honest voter does, she might not submit it. Because of the same requirement, the model
abstracts away from the problem that ballots might be dropped or manipulated in the
casting phase: it implicitly assumes that each valid ballot of a voter who has not voted
yet gets to the bulletin board. In addition, the model does not make a difference between
a voter and her client.

Whether a voting scheme achieves universal verifiability according to Chevallier-
Mames et al. (Definition 17), depends on how ”Bi valid” is defined for the transcripts Bi
used in the voting scheme.

The second condition in Definition 17 is too strong from a practical point of view
because a voting scheme in which invalid ballots are removed can not achieve universal
verifiability according to Definition 17. To see this, consider the case that in a run of a
voting protocol a voter provides an invalid zero-knowledge proof for her ballot. Then, in
order to guarantee correctness, this ballot is (typically) not considered in the tally. Since
the transcript of the voter who submitted the invalid ballot is not valid, we have B /∈L .
By the second point of Definition 17, it follows that, even if all voting authorities are
honest, then each zero-knowledge proof for the correct result of the election w.r.t. the
voters who submitted valid ballots will be rejected.

If a voting scheme is universally verifiable according to Definition 17, and in a run
of its protocol we have that B ∈L , then by the first and third condition in Definition 17
it follows that in this run

(B,Tally,Vcast) ∈L ′⇔ (Tally,Vcast) = ( f ′(B), f ′′(B)).

By the second requirement for voting schemes (computation of the tally), the fact that
B ∈L and (Tally,Vcast) = ( f ′(B), f ′′(B)) hold true in a run implies that the same run
satisfies γ0 as introduced in Definition 2. Conversely, the fact that a protocol run satisfies
γ0 does not imply that B ∈L holds true in the same run, and in particular, γ0 does not
imply (B,Tally,Vcast) ∈L ′. To see this, consider the case above where invalid ballots
are removed.

The conditions in Definition 17 have to be fulfilled in every run of the protocol, and
not only with overwhelming probability. This requirement is typically too strong.

D.4 Casting in the KTV Framework

Protocol PCFPST . The set of agents Σ consists of the voters, the judge J and the
remaining participants. Let B and L be defined as in the model of Chevallier-Mames
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et al. (Section D.1). Since static corruption is considered, the agents only accept to be
corrupted at the beginning of an election run. The voters, the bulletin board, and the
judge don’t accept to be corrupted.

When Vi runs her honest program πVi , she expects a candidate ci as input. If the
input is empty, or if the input is not empty but the voter has already been triggered and
received a candidate before, she stops. Otherwise, she runs Vote(ci).

The honest program πJ of the judge J depends on the concrete election scheme.
Intuitively, when the judge runs her honest program, she receives (B,Tally,Vcast) along
with a zero-knowledge proof as her input, and then evaluates whether (B,Tally,Vcast) ∈
L ′ holds true. She outputs ”accept” if and only if the evaluation is positive.
Universal verifiability. Let the goal γ0 be defined as in Definition 2 by Küsters et al.,
and the language L be defined as in Section D.1. For the protocol PCFPST , universal
verifiability according to Chevallier-Mames et al. (Definition 17) can essentially be
characterized by the fact that the protocol PCFPST is (γ0∩L ,0)-verifiable in the sense
of Definition 1.

To see this, first note that if γ0 is not satisfied in a run, then by the first and third
condition in Definition 17 we have (B,Tally,Vcast) /∈L ′. Consequently, an honest judge
as sketched above, does not accept the run. However, as shown above, there are runs
in which γ0 is satisfied but an honest judge as sketched above does not accept the run
because B /∈L holds true. Therefore, the goal γ requires that in a run γ0 and B ∈L
must hold true in order to describe Definition 17.

Definition 17 does not require any variant of fairness. The reason is that if all voting
authorities are honest but one single voter is dishonest and submits an invalid ballot, then
the judge (as sketched above) does not accept the result although γ0 is achieved (see
Discussion D.3).

E Universal Verifiability by Szepieniec et al.

In this section, we present and discuss the definition of universal verifiability by Szepie-
niec et al. [48]. Due to its shortcomings (see discussion below), we omit the casting in
the KTV framework.

E.1 Model

Definition 18 is supposed to be applicable to any protocol P that can be analyzed in the
universal composability (UC) framework.

E.2 Universal Verifiability

Let V (verifier) be a probabilistic polynomial-time algorithm which takes as input the
transcript as produced by an adversary A attacking a protocol P. The verifier V eventually
outputs a bit b̃. Let b be a variable indicating whether the protocol was executed correctly
by all parties – i.e., the parties behaved honestly and were not corrupted by the adversary
– and if the transcript is authentic, by assuming the value 1 if this is the case and 0
otherwise.
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Definition 18 (Universal Verifiability). A protocol P is universally verifiable if there
exists a verifier V such that, for all adversaries A attacking the protocol, V has significant
distinguishing power: ∣∣∣Pr[b = b̃]−Pr[b 6= b̃]

∣∣∣≥ 1
2
,

where the probabilities are taken over all random coins used by V, A and P.

Szepieniec et al. stress that the verifier V in Definition 18 must be able to differentiate
between simulated parties created by the adversary A and genuine protocol participants.

E.3 Discussion

The universal verifiability definition by Szepieniec et al. has mainly two shortcomings.
First, fundamental expressions used in Definition 18 remain undefined in [48]: it is,

for example, unclear what the terms ”attacking the protocol”, ”behaved honestly” and
”corrupted” formally mean.

Second, if one assumes common definitions of honest/corrupted, the universal verifi-
ability definition is clearly too strong because, as Szepieniec et al. point out, the verifier
must be able to differentiate between honest and dishonest participants. This is, however,
typically impossible for any (not necessarily ppt) verifier in any protocol because a
corrupted participant can still follow its honest program. On a high level, Definition 18
requires that there has to exist a verifier who can ”look inside” the (corrupted) partic-
ipants, rather than a verifier who opts for possible deviations in the publicly available
data.
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